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Abstract 

When we have dataset with large number of labelled examples it is easy to perform object 

detection task but, rare object detection from a few examples is a new problem. Meta-

learning has been shown to be a promising strategy in the past. However, fine-tuning 

strategies have received little attention. We discovered that fine-tuning the last layer of 

detector is a critical task in few-shot object detection. On current benchmarks, such a basic 

strategy outperforms meta-learning approaches by about 4 to 16 points and sometimes the 

accuracy is doubled when compared to existing methodologies. However, current 

benchmarks are frequently unreliable because of the significant variance in the few samples. 

To generate consistent comparisons, we change the evaluation processes by choosing various 

sets of training examples. The model has been evaluated on three datasets: COCO, LVIS, and 

PASCAL VOC. Our fine-tuning approach amalgamated with the Ranking based loss function 

which can be used for both classification and localization is state-of-the-art. 

Keywords: Computer Vision, Few-shot Object detection, Meta-learning, 

 

Introduction 

Recently, machine perception software has made great improvements. However, when in 

comparison to human visible systems, our capability to train versions that generalise to novel 

concepts with less amount labelled data is still lacking. With very little guidance, even a 

toddler may instantly recognise a new notion(Samuelson & Smith, 2005; Smith et al., 2002). 

Few-shot learning, or the ability to generalise from a small number of examples, has become 

a hot topic in the machine learning community. 

Many(Finn et al., 2017; Gidaris & Komodakis, 2018; Vinyals et al., 2016) researchers have 

looked into meta-learning as a way to transfer knowledge from data-rich base classes to data-

poor innovative classes. To run  few-shot simulations on novel classes the researchers do 

sampling and form a base class during training(X. Wang et al., 2020). However, the majority 

of this research has been on fundamental picture categorization problems. Few-shot object 

detection, on the other hand, has gotten significantly less attention. Object detection, unlike 

picture classification, necessitates the model to not only distinguish object kinds but also to 

locate the targets among millions of possible regions. The overall complexity of the task is 

significantly increased by the addition of this new subtask(Kang et al., 2019)(Y. X. Wang et 

al., 2019). Several(Kang et al., 2019; Ren et al., 2017; Y. X. Wang et al., 2019; Yan et al., 

2019) researchers have attempted to solve the object detection problem with few labelled 
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data, the few-shot learning problem generally is solved by attaching a meta learner which 

uses Meta-learning methods for classification and then a regressor to detect the underlying 

object networks.  

However, present evaluation techniques are statistically unreliable, and the accuracy of 

baseline approaches on few-object identification, particularly easy fine-tuning, is inconsistent 

throughout the literature(A. Li et al., 2020). 

We propose a novel approach to detect object using few labelled data i.e. our model is highly 

adaptive to limited number of new samples. We circumspectly analyze calibrating based 

strategies that are considered to fail to meet expectations in the prior works(Kang et al., 2019; 

Y. X. Wang et al., 2019). We are attempting to bridge the divide between picture 

classification and object detection. Detection, unlike image classification, necessitates the 

identification of (potentially many) objects inside an image. We focus on the preparation 

standard just as the example level capacity standardization of the specific article identifiers 

inside model plan in addition to preparing contingent upon calibrating. We receive the two-

stage preparing plan for calibrating. We all first train the total article indicator, this sort of as 

Faster R-CNN(Ren et al., 2017), around the data abundant base courses, after which just 

adjust the last layers related with the specific identifier upon little adjusted instructing 

masterminded involving every establishment and book courses while freezing the specific 

different rules related with the plan(T. Wang et al., 2019). All through the adjusting stage, we 

all present case level capacity standardization to the specific bundle classifier(Gidaris & 

Komodakis, 2018). 

On the current PASCAL VOC [13] and COCO [14] standards, we have achieved state-of-the-

art performance when compared to all previous available methods by 4 to 16 points. Our 

method can perform twice as well as previous superior state-of-the-art systems when training 

on a single (one-shot learning) shot example. Existing analytic methods have a number of 

flaws that prevent consistent model comparisons. Precision measurements have a lot of 

fluctuation, thus released comparisons aren't very accurate. Furthermore, past evaluations 

only reported detection accuracy on fresh courses and did not examine knowledge retention 

in foundation classes. 

We're all working on new standards based on three datasets: COCO, LVIS [15], and 

PASCAL VOC. To get a steady accuracy evaluation and quantitatively examine the 

variations associated with distinct examination measures, we all sample distinct groupings of 

few-shot instruction instances for several runs from the tests. The new evaluation reports the 

mean accuracy on all lessons, referred to the generic few-shot learning setting within the few-

shot category [8], as well as the typical accuracy on both the bottom and novel lessons. Our 

fine-tuning method creates entirely new states based on the artwork on the standards. On the 

difficult LVIS dataset, the two-stage training structure increases the typical detection 

precision associated with rare classes (less than 10 images) by approximately six points and 

typical classes (between two to 100 images) by approximately four points with all the 

minimal precision loss regarding the frequent lessons (on more compared to 100 images). 

Meta-learning 

Humans can recognise different objects with different dimensions even if they are provided 

very few examples, but it is a very difficult task in computer vision when the labelled data is 

limited. Meta-learning tries to achieve this goal when we have limited labelled data. 
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Researchers in(Berkeley et al., 2017; Ren et al., 2017)  learn to fine-tune and purpose a great 

parameter setup that can adapt to the new tasks with just a few scholastic gradient upgrades. 

The use of parameter development during adaptation to novel tasks is another major line of 

meta-learning study. To produce final classifier values for the novelty classes, several 

researchers have proposed an attention-based weight generator. Some(Gidaris & Komodakis, 

2018),(Kolmogorov & Rol, n.d.) researchers create task-aware pattern embeddings by 

producing feature layer settings. These methods have only been applied to single-shot picture 

classification and not to more difficult tasks such as object detection. Moreover, given the 

lack of a regular comparison of alternative methodologies, some researchers [11],[17],(Liu et 

al., 2020) are concerned about the results' dependability. Many prior efforts that apply meta-

learning on few-shot image categorization turn out to be more beneficial than some basic 

fine-tuning-based algorithms, which have received little attention in the field. Due to rising 

network complexity and unclear implementation details, there are no common evaluation 

parameters for few-shot object detection task. 

Metric-learning 

Another area of study is(Vinyals et al., 2016) learning to compare, also known as metric 

learning. Even if we teach a child how a car looks, it is possible for them to recognise another 

car though it can have complete different feature sets like size, colour, and brand. This is how 

metric-learning works. So if a model is able to estimate the similarity between two different 

objects using distance metric, it should be able to generalise it into a novel category even 

when few labelled examples are provided. Recently, multiple researchers(Jiang et al., 2021; 

Karlinsky et al., 2019; X. Li et al., 2020) have used a cosine similarity-based classifier which 

reduces intraclass variance on the few-shot classification problem, resulting in better 

performance than several meta-learning-based techniques. To identify the categories of the 

region proposals, our method uses a cosine similarity classifier. However, rather than 

measuring distance at the image level, we focus on instance-level distance measurement. 

Ranking based Object detection 

 Optimizing a ranking-based aim is an inspiring way for balancing classes(Kolmogorov & 

Rol, n.d.)(Chabot et al., 2019). However, because such objectives are discrete in relation to 

the scores, direct inclusion is difficult(Tan et al., 2019). The use of black-box solvers for an 

interpolated Average precision (AP) loss surface is one approach, however it only produced a 

minor speed boost. AP Loss provides an alternative technique, calculating gradients using an 

error-driven update method.  Distributional ranking (DR) Loss, an alternative, uses Hinge 

Loss to establish a buffer between the positive and negative scores. Regardless of promising 

results, these kinds of methods are restricted to classification and depart localisation(Lv et al., 

2021). As opposed, we all propose an individual, well-balanced, ranking-based loss to be able 

to train both divisions. 

Object detection using fewer examples 

 Several initial meta-learning methods at the few object identification have been made. Many 

use feature re-weighting approaches with a meta learner that accepts the support pictures (i.e., 

a small number of labelled photos of the novel/base classes) and the boundary box 

annotations as inputs to a single-stage object detector (You only look once version2)(Oksuz 

et al., 2018) and a two-stage object detector (Faster R-CNN)(Ren et al., 2017). Another 

option is to utilise a weight prediction meta-model to estimate category-specific component 
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attributes from a small number of instances while studying category-agnostic components 

from user defined class instances using a weight prediction meta-model(A. Li et al., 2019). 

Fine-tuning-based procedures are deemed baselines in all of these studies, with lower 

performance as compared to approaches using meta- learning. The model are trained using 

two different approaches (I) fine-tuning of model is done, when detector is trained is trained 

on both novel and base class(Girshick et al., 2014). (II) When the detector is trained only on 

base class and fine-tuned on novel and base class with balanced partition set(Xu et al., 2020). 

In our novel approach we have estimated that it is only sufficient to fine-tune the last layer of 

detector and rest layers can be ignored, the performance increase to almost two folds when 

trained using our approach and successfully outperformed all previous approaches of meta-

learning. 

 

Method 

In this section we will be presenting our strategy based on two-stage fine-tuning approach for 

object detection. The faster R-CNN (FCRN), which itself is a two-stage detector is used as 

our basic detector. Figure 1 presents abstract of the approach which we are using, ResNet and 

VGG16 are used as the foundation for the region proposed network, and for feature extractor 

we are using a two-layer fully-connected sub-network. The feature acquisition component is 

denoted by F. The box predictor consists of a box classifier(C) which is used for categorizing 

types of objects and a regressor(R) which predicts the boundary coordinates. The R-CNN and 

region proposed network seem to be class-agnostic, which leads to the conclusion that the 

characteristics acquired from base class is likely to be carried over to a new class without any 

further parameter tuning. The division of feature representation and box prediction learning 

into two phases is a key feature of our approach.  

Phase 1: Training the base model: 

Step 1: Train box predictor and feature extractor on base class denoted by Bc. 

Step 2: Use the loss function of [9]. 

Step 3: calculate joint loss 

 𝐿 = 𝐿𝑟𝑝𝑛 +  𝐿𝑐𝑙𝑠 + 𝐿𝑙𝑜𝑐      (1) 

 Where 𝐿𝑐𝑙𝑠 is the cross entropy loss of classifier 

  𝐿𝑙𝑜𝑐Is smoothed for regressor 

Step 4: Apply 𝐿𝑟𝑝𝑛 to output of RPN, which will differentiate foreground and background. 
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Figure 1: two-stage fine-tuning methodology is depicted in this diagram (TFA).  

Phase 2: Fine-tuning 

K (few) shots per class is extracted from the available samples and training class is designed. 

This includes both base and novel data. As demonstrated in the figure 2, the box prediction 

network is initialized with random weights and fine-tuning of the box classifier (C) and 

regressor (R) with only the last layer of detector is done. The equation 1 is used to apply the 

loss function but with lower learning rate. From the beginning we have observed 20 percent 

deduction in training rate of our model. 

A meta-learner is used to obtain task-level Meta information which assist in the 

generalization of model on novel classes, through feature re-weighting. A two stage training 

strategy combined of meta-training and Meta fine-tuned approach is typically used with 

episodic learner. 

Implementation details 

We employ Resnet-101 with a Feature Pyramid Network as our backbone and FCRN as our 

base detector. The model is trained using batch approach with stochastic gradient descent 

with a batch size of 32 and weight decay factor is 0.0001. The momentum is fixed at 0.8. The 

learning rate was 0.01 and for few-shot fine tuning a rate of 0.0001 was used while training 

the base model. 

 
Figure 2: Fine-tuning model based on meta-based approach. 
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Baseline 

We have compared our approach with previous meta-learning based approaches such as 

Meta-RCNN, FSRW and MetaDet, as well as the approach have been compared by other 

fine-tuning methods like FRCN when combined with YOLO, in which the base and novel 

approaches are trained in a single phase and the entire model (FCRN or YOLO with ft-full) is 

fine-tuned. In this the feature extractor and package predictor (C and R) both are fine-tuned. 

The FCRN or YOLO with ft- full is fine tuning the model with fewer labelled data is reported 

in (Kang et al., 2019)(Yan et al., 2019). 

Existing Benchmark: 

Model 
novel AP novel AP

75
 

10 30 10 30 

FSRW  5.6 9.1 4.6 7.6 

MetaDet 7.1 11.3 6.1 8.1 

FRCN+ft+full 6.5 11.1 5.9 10.3 

Meta R-CNN 8.7 12.4 6.6 10.8 

FRCN+ft-full 8.9 12.6 9.3 14 

TFA w/ fc  10 13.3 9.1 13.1 

TFA w/ cos 10 13.6 9.2 13.3 

Table 1: Comparison of results with existing benchmark on COCO dataset. 

In the table 1 we have presented the benchmark in which we have compared FSRM(Kang et 

al., 2019), MetaDet(X. Wang et al., 2020),  FRCN+ft+full(Yan et al., 2019) and Meta-R-

CNN(Yan et al., 2019) with our reimplemented model of FRCN+ft+full, FC-based classifiers 

and cosine similarity based classifiers. Our model has consistently outperformed the existing 

benchmark. 

Findings 

In this section we have presented our research finding by implementing our novel approach 

on COCO and PASCAL VOC. 

 
Figure 2: Object detection using our algorithm on PASCAL VOC and COCO dataset. 

The figure 2 shows the result of our approach on PASCAL VOC (bus, train, bike) and COCO 

(cat, dog, horse, lion, tiger, elephant) dataset. The red boxes indicate the objects and their 

corresponding percentage. We are using a threshold value of 50%. In the cosine similarity we 
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have initialized α to 25 and it has outperformed the previous existing methods on both COCO 
and PASCAL VOC in all our experiments. 

Split 
# 

shots 
Method Base class Novel class Overall 

      bAP bAP
50

 bAP
75

 nAP nAP
50

 nAP
75

 AP AP
50

 AP
75

 

Split 

1 

1 FSRW  

34.1 62.9 32.6 8 14.2 7.9 26.6 50.8 26.5 

38.2 62.6 40.8 6 9.9 6.3 29.5 49.4 32.2 

48.7 77.1 53 12.2 22.9 11.6 39.6 63.5 43.2 

49.4 77.6 54.8 14.2 25.3 14.2 40.6 64.5 44.7 

3 
FSRW 

FRCN+ft-full 

33.9 61.8 32.7 13.2 24.2 12.6 28.7 52.2 27.7 

37.3 60.7 40.1 9.9 14.2 10.2 30.5 49.4 32.6 

47.8 75.8 52.2 18.9 33.24 18.2 40.5 65.5 43.8 

49.6 77.3 55 21.7 35.2 21.6 42.6 67.1 47 

5 
FSRW  

FRCN+ft-full 

32.4 60.5 93.35 74.68 29.4 15.4 29.5 52.4 27.5 

36.7 60.3 34.94 38.40 20.4 13.8 31.8 50.2 33.2 

47.6 77.4 30.92 50.74 40.2 21.4 41.8 666.2 46.7 

49.5 78.2 21.13 6.65 43.5 26.1 43.7 67.4 48.3 

10 
FSRW 

FRCN+ft-full 

33.4 61.4 30.09 91.57 14.36 64.21 30.4 53.4 28.6 

36.4 62.8 3.37 44.95 89.56 86.36 33.2 51.6 35.4 

47.6 74.6 1.03 65.49 64.19 21.02 42.5 67.9 44.7 

51.2 77.1 40.98 35.79 18.97 85.65 45.2 71.5 48.7 

15 
FRCN+ft-full 

TFA w/fc 

34.6 58.4 7.69 67.34 1.12 8.03 34.5 54.6 34.6 

48.5 64.2 45.19 78.74 79.79 51.39 41.6 68.9 47.6 

49.6 73.5 9.35 66.57 60.02 56.49 44.7 72.5 49.8 

Split 

2 

1 FSRW  

68.40 50.86 74.02 89.28 92.61 77.69 29.83 74.99 80.29 

36.33 41.29 94.91 26.98 32.09 16.37 37.50 38.14 78.07 

6.53 42.44 7.90 29.34 74.23 63.36 47.32 40.81 8.13 

71.55 48.29 6.30 88.85 15.55 88.45 86.07 74.72 17.83 

3 
FSRWFRCN+ft-

full 

98.33 63.36 76.23 94.20 80.75 35.45 77.17 87.28 75.40 

95.83 77.31 28.75 21.51 23.65 4.80 73.60 99.00 73.48 

53.30 37.80 5.48 24.98 67.47 50.82 5.67 17.41 51.22 

4.23 63.71 6.37 21.37 70.55 8.84 90.17 47.71 70.55 

5 
FSRW 

FRCN+ft-full 

70.45 94.31 44.50 63.52 67.00 48.66 71.92 68.73 98.36 

76.78 83.49 90.09 36.31 79.07 73.35 54.64 54.79 9.36 

87.42 71.70 87.11 76.48 66.86 42.74 16.88 53.99 25.21 

97.98 90.51 62.83 36.52 38.50 78.10 28.77 89.60 3.11 

10 FSRW 82.06 40.71 70.36 96.43 32.87 14.28 25.45 3.04 67.73 
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FRCN+ft-full 75.53 57.28 88.75 73.29 27.94 39.91 88.15 90.84 64.30 

60.59 84.96 39.50 35.29 56.97 71.82 59.43 77.68 75.81 

25.98 98.87 32.70 36.53 91.73 75.71 7.57 18.07 67.24 

15 
FRCN+ft-full 

TFA w/fc 

43.74 3.42 10.06 17.78 92.30 69.42 78.09 8.53 92.76 

80.38 32.25 33.08 67.12 72.15 38.41 65.41 51.63 27.59 

67.68 82.44 86.75 12.10 32.51 99.77 73.87 54.66 55.62 

split 

3 

1 FSRW  

84.91 98.03 33.81 6.40 41.56 43.73 5.75 78.08 7.10 

57.80 30.72 60.46 29.37 20.72 55.70 81.29 54.45 34.58 

71.34 11.17 78.12 29.38 65.96 51.52 68.94 73.14 63.25 

26.79 42.21 80.26 17.43 40.11 17.28 77.58 40.41 14.28 

3 
FSRW  

FRCN+ft-full 

49.35 64.03 83.86 19.22 99.22 98.38 72.82 29.79 11.27 

95.95 78.35 14.00 79.07 93.03 70.43 49.45 11.93 3.83 

28.22 85.36 18.92 6.42 96.13 82.51 31.76 71.24 24.26 

39.00 15.51 74.25 88.05 87.33 83.19 80.37 22.17 0.53 

5 
FSRW  

FRCN+ft-full 

48.94 40.09 42.60 26.55 48.86 12.96 62.71 31.90 94.12 

6.56 68.38 54.90 92.22 16.05 66.26 24.51 72.60 69.05 

67.69 45.04 27.19 58.80 76.33 32.05 45.79 69.48 20.21 

29.28 91.64 67.48 12.20 79.81 94.92 64.79 29.67 16.78 

10 
FSRW  

FRCN+ft-full 

91.77 48.64 80.06 54.65 23.19 17.05 77.56 5.18 50.22 

22.22 80.42 54.10 74.70 80.11 0.53 25.48 45.87 63.04 

82.50 58.39 92.48 56.83 29.73 12.54 35.96 74.93 78.11 

84.75 81.60 12.70 15.35 39.88 44.15 0.27 94.66 98.74 

15 
FRCN+ft-full 

TFA w/fc 

88.91 46.82 7.70 78.68 26.48 92.46 68.26 36.29 17.21 

83.80 32.36 97.31 43.20 33.03 61.87 50.15 13.88 99.18 

5.26 65.21 69.36 45.40 64.17 72.94 91.16 4.38 5.64 

Table 2: Object detection on PASCAL VOC 

Table 2 represents the complete revised benchmark on PASCAL VOC dataset with 93% 

confidence interval. In the tables, we show the average AP, AP
50

, and AP
75

 for base classes, 

novel classes only, and overall classes. 

The 93% confidence is calculated using equation 2: 93% 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 1.94 ∗ 𝑠√𝑛                                                                     (2) 

Here, 1.94 is the z-value and standard deviation is denoted by s and n is number of iterations. 
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Table 3: Object detection on COCO 

The model was evaluated for different shots and consistently outperformed existing model by 

4 to 16 points in the novel class.Table 3 represents the complete revised benchmark on 

COCO dataset with 93% confidence interval. The n value is 15 for the COCO dataset. We 

have presented the average precisions (AP) on 50 and 75 interval i.e. AP
50

 and AP
75

 for base, 

novel and overall classes.  

Conclusion 

We described a loss function-based technique for two-stage few-shot object recognition and 

rating, which can rationally and efficiently execute both tasks. On a variety of well-known 

benchmarks for few-shot object recognition, we exhibited the advantages and accuracy of our 

#shots 
Method 

Base class Novel class Overall 

bAP bAP
50

 bAP
75

 nAP nAP
50

 nAP
75

 AP AP
50

 AP
75

 AP APm APl 

1 

FRCN+ft-

full 
12.19 6.07 85.60 38.66 98.34 42.56 42.27 31.25 64.60 77.45 71.42 22.25 

TFA w/fc 68.06 7.84 92.01 99.21 83.78 8.90 61.09 89.83 75.33 60.75 40.09 13.23 

TFA 

w/cos 
6.22 42.38 48.99 37.64 71.61 78.79 90.89 63.27 43.78 33.68 84.29 92.27 

2 

FRCN+ft-

full 
91.59 84.39 39.74 94.77 24.86 64.92 36.01 78.21 42.93 8.46 4.97 92.17 

TFA w/fc 99.76 72.98 52.38 98.77 14.17 64.31 89.61 82.53 25.12 65.40 42.04 75.86 

TFA 

w/cos 
26.91 71.41 31.45 95.14 98.00 99.81 90.57 9.83 47.11 91.92 3.22 20.91 

3 

FRCN+ft-

full 
11.85 72.70 16.48 38.44 40.88 84.80 73.94 67.16 41.18 27.34 62.34 19.03 

TFA w/fc 51.92 38.38 41.27 40.46 7.58 90.71 37.06 84.57 23.75 47.84 90.38 24.90 

TFA 

w/cos 
66.73 41.45 43.01 11.75 35.19 38.38 68.41 83.33 95.87 61.29 79.89 49.42 

5 

FRCN+ft-

full 
59.92 76.59 44.31 28.80 52.10 9.83 89.84 61.24 19.94 71.51 13.98 7.18 

TFA w/fc 1.72 66.44 75.55 84.63 52.11 94.89 13.03 15.66 25.57 49.08 91.29 60.83 

TFA 

w/cos 
34.64 30.51 64.41 5.59 28.96 95.36 93.89 17.21 49.26 89.63 5.92 72.84 

10 

FRCN+ft-

full 
68.65 23.30 81.02 9.17 26.02 75.24 40.82 42.74 12.65 18.28 61.00 7.05 

TFA w/fc 29.35 17.11 73.71 91.26 92.35 90.61 71.16 6.34 97.88 77.53 74.39 53.11 

TFA 

w/cos 
15.30 14.96 30.72 28.00 88.76 76.89 93.80 84.39 88.99 32.40 82.44 97.57 

30 

FRCN+ft-

full 
63.66 82.65 78.77 5.65 74.46 70.82 28.67 21.88 20.49 64.08 96.16 41.70 

TFA w/fc 30.17 19.16 79.85 92.87 31.76 82.48 90.79 5.68 22.95 29.34 31.49 43.11 

TFA 

w/cos 
51.69 53.85 36.79 36.85 78.48 61.08 91.02 96.86 46.64 36.96 71.00 77.90 
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technique, and we greatly improved the state-of-the-art. Our models attained a recognition 

rate of 32.3 percent on the PASCAL VOC dataset and 39.5 percent on the COCO dataset. We 

also demonstrated that our few-shot model can generate impressive outcomes on unique 

objects discovered by our few-shot detector and we confirm our findings by comparing it to 

ground truth provided by the existing approaches. 
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