Availability and Profit Analysis of Gas Turbine System using Fuzzy Trapezoidal Numbers with Different Left Height and Right Height

Meenu Goel *Shiv Narain**

*Department of Statistics, Mata Sundri College for Women,

University of Delhi, Delhi-110002

E-mail: mngoel84@gmail.com

**Arya P.G. College, Kurukshetra University Kurukshetra, Haryana, India

E-mail:math.shiv@gmail.com

Abstract

This paper analyzed a gas turbine system by using method of α -cuts coupled with trapezoidal fuzzy numbers of different left and right height for general distribution. Gas turbine system having six subsystems namely - Air inlet subsystem, Compressor subsystem, Combustion chamber subsystem, Turbine subsystem, Electric generator subsystem and Governing subsystem which are working in series. Subsystems turbine, electric generator and governing fails completely via reduced capacity. Fuzzy failure and fuzzy repair rates of all the subsystems are taken as general. Giving particular values to various parameters and costs, the numerical results for availability and profit are obtained by considering exponential, Rayleigh and Weibulldistributions for all random variables.

Keywords Gas turbine system, Trapezoidal fuzzy numbers with different left and right heights, Fuzzy availability, Fuzzy profit, General distributions.

Introduction

In the present era of modernization and industrial growth, the fabrication of new products is becoming more and more complex in nature. Due to this complexity the comprehensive study of reliability analysis of the system becomes more apparent. But due to innovation and interconnection of different research field, the reliability analysis got exposure to different field of sciences such as electrical, mechanical, electronic and other associated fields. Mathematical aspects have made the reliability more applicable to many industries. Many researchers and engineers discussed reliability models of various industrial systems or subsystems. Kumar et al. (1989) discussed the reliability analysis of feeding system of paper industry. In continuation of this Kumar et al. (1989) evaluated availability of washing system in paper industry with constant failure and repair rates. Kumar et al. (1990) discussed reliability of a refining system in sugar industry. Kumar and Pandey (1993) discussed about maintenance planning in urea fertilizer plant. Kumar et al. (1997) analyzed the steady state behavior of a desulphurization system in urea plant. Using fourth order Runga- Kutta method Gupta et al. (2004) obtained numerical results for reliability and availability of a butter oil processing plant. Using simulated model Gupta and Tiwari (2009) obtained the reliability of a thermal power plant. Suleiman (2013)

evaluated the performance of a thermal power plant. Iqbal and Uduman (2016) discussed reliability of paper plant using Boolean function with fuzzy logic technique.

The traditional reliability techniques are dependent on probability obtained by the crisp or precise data values. However in actual practice the data obtained may or may not be precise or certain. Therefore in many industrial problems it may be difficult to derive useful information about reliability of the system where data is imprecise, vague or linguistic in nature. To handle these situations the concept of fuzzy sets may be quite helpful to derive the reliability of the system.

Zadeh (1965) presented the concept of fuzzy set theory. The concept of fuzzy set or fuzzy number can handle all possible states or outcomes associated with a system. Since then a lot of work has been done by many researchers like Singer (1990), Cai et al (1999(a), 1999(b)), Cheng and Mon (1993), Chen (1994) and Verma et al. (2002) to determine reliability of various system. Furthermore, Aliev and Kara (2013) discussed fuzzy system reliability using the interval of confidence and time dependent fuzzy set. Buckley and Feuring (2001) proposed two analytical methods for solving nth order fuzzy differential equation. Using one of the method given by Buckley and Feuring, Lata and Kumar (2011) observed that the reliability of markov model need not be a fuzzy number even if the random variable associated with the system are taken as fuzzy number. To overcome this problem Lata and Kumar proposed Mehar's method and evaluated fuzzy reliability of Piston manufacturing system. Verma et al.(2012) studied power system reliability evaluation using Fault tree analysis based on generalized fuzzy numbers. Kumar and Lata (2012) evaluate fuzzy reliability of condensate system. Chen et al (2012) proposed a new approach for analyzing fuzzy risk based on fuzzy numbers with different left and right heights. Verma and Kumar (2014) evaluated the reliability of a gas turbine system using vague λ - τ methodology. Goel and Narain (2018) discussed the fuzzy availability of Polytube industry by taking general distributions of all random variables. Most of the fuzzy reliability techniques available in literature deal with triangular or trapezoidal types of fuzzy numbers. These fuzzy numbers incorporate precision of data on a point or on an interval. But it is quite possible that the data available with an industrial system may be imprecise or uncertain throughout the operating time of the system under consideration.

Thermal industry is one of the most important industry associated with the life of a human being. It meets many commercial and daily life requirements in one or another way. Due to increasing population and urbanization power consumption is increasing per day, but on the other hand natural resources such as coal, fossil fuels and plant woods are limited in abundance. This industry need to be focused from reliability prospective. To achieve optimum reliability, failure hazards should be constrained to minimize as possible. A gas turbine system is a combustion engine that converts natural gas or other liquid fuels to mechanical energy which in turn derives a generator to produce energy. This feature of production of energy makes gas turbine as one of the key components of various industries such as thermal industry, automobile industry and many other mechanical industries.

Keeping in mind the importance of gas turbine system in industries, its availability and profit etc. should be calculated in more flexible and intelligent manner to counter with the technical and economical challenges. To handle these situations of more fuzziness, fuzzy numbers of different left and right height are used to evaluate fuzzy profit and fuzzyavailability of a gas turbine system. Gas turbine system having six subsystems namely - Air inlet subsystem, Compressor subsystem, Combustion chamber subsystem, Turbine subsystem, Electric generator subsystem and Governing subsystem which are working in series. Subsystems turbine, electric generator and governing fails completely via reduced capacity. Fuzzy failure and fuzzy repair rates of all the subsystems are taken as general. Giving particular values to various parameters and costs, the numerical results for availability and profit are obtained by considering exponential, Rayleigh and Weibull distributions for all random variables.

This paper has been organized as follows: Section 1 is introductory in nature, Section 2 introduces the basic definitions and arithmetic operations related to traditional trapezoidal fuzzy numbers and trapezoidal fuzzy numbers with different left and right height. In section 3, comparison between traditional and proposed method has been discussed. In section 4, a complete introduction about description of the system along with notations and assumptions of the system is given. Section 5 discussed the mathematical modeling of gas turbine system is presented. In section 6, fuzzy availability and fuzzy profit has been calculated. Conclusion drawn from analysis is discussed in section 7.

Basic Definitions

In this section, some basic definitions and arithmetic operations related to traditional trapezoidal fuzzy numbers and trapezoidal fuzzy numbers with different left and right height are presented:

Definition2.1:-A trapezoidal fuzzy number $\tilde{A} = (a,b,c,d)$ is said to be zero trapezoidal fuzzy number if and only if a = 0, b = 0, c = 0, d = 0.

Definition 2.2:- An α -cut of a fuzzy number \tilde{A} is defined as a crisp set $A_{\alpha} = \{x : \mu_{\tilde{A}}(x) \ge \alpha, x \in X\}$, where $\alpha \in [0,1]$. For a trapezoidal fuzzy number $\tilde{A} = (a,b,c,d)$ the α -cut $A_{\alpha} = [a + (b-a)\alpha, d - (d-c)\alpha]$.

Definition 2.3: Two α -cuts $A_{\alpha} = [a,b]$ and $B_{\alpha} = [c,d]$ are said to be equal i.e. $A_{\alpha} = B_{\alpha}$ if and only if a = b and c = d.

Definition2.4:-Let A = [a,b] and B = [c,d] be two α -cuts of trapezoidal fuzzy numbers \tilde{A} and \tilde{B} respectively. Then

$$A + B = [a + c, b + d]$$

$$A - B = [a - d, b - c]$$

$$\lambda A = \begin{cases} [\lambda a, \lambda b] & \lambda \ge 0 \\ [\lambda b, \lambda a] & \lambda \le 0 \end{cases}$$

$$A \times B = [\min(ac, bd, bc, bd), \max(ac, ad, bc, bd)]$$

$$\frac{[a,b]}{[c,d]} = \left[\min\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right), \max\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right) \right]$$

Definition2.5:-A fuzzy number $\tilde{A} = (a,b,c,d)$ is said to be a trapezoidal fuzzy number if its membership function is given by

$$\mu_{\tilde{A}}(x) = \begin{cases} \frac{x-a}{b-a} & a \le x \le b \\ 1 & b \le x \le c \\ \frac{x-d}{c-d} & c \le x \le d \\ 0 & otherwise \end{cases}$$

Definition2.6:-A set $\tilde{A} = \{(a,b,c,d); \mu_L, \mu_R\}$ is said to be a trapezoidal fuzzy number with different left and right heights if its membership function is given by

$$\mu_{\tilde{A}} = \begin{cases} \mu_L \frac{x-a}{b-a} & a \leq x \leq b \\ \mu_L + \frac{x-b}{c-b} (\mu_R - \mu_L) & b \leq x \leq c \\ \mu_R \frac{x-d}{c-d} & c \leq x \leq d \\ 0 & otherwise \end{cases}$$

Definition2.7:- An α -cut of a fuzzy number $\widetilde{A} = (a, b, c, d)$ with different left height and right height is defined as

$$A_{\alpha} = \begin{cases} a + (b-a)\frac{\alpha}{\mu_{L}}, & d - (d-c)\frac{\alpha}{\mu_{R}} \\ b + (c-b)\frac{\alpha - \mu_{L}}{\mu_{R} - \mu_{L}}, & d - (d-c)\frac{\alpha}{\mu_{R}} \end{cases} \qquad \alpha \in [0, \mu_{L}]$$

$$\alpha \in [\mu_{L}, \mu_{R}]$$

Comparison between traditional and proposed method

The method of α -cuts, given by Buckley and Feuring (2001),is one of the most commonly used methodto solve a nth order fuzzy initial value problem. This method involves the use of traditional trapezoidal fuzzy numbers. In our proposed method these traditional fuzzy numbers are replaced by trapezoidal numbers of different left and right height. To illustrate the difference between traditional method and proposed method, we consider a single unit model shown in Fig.1. Fuzzy failure rates ($\tilde{\lambda}_1$, $\tilde{\lambda}_2$, $\tilde{\lambda}_3$) and fuzzy repair rates ($\tilde{\tau}_1$, $\tilde{\tau}_2$) associated with this system represented by traditional trapezoidal numbers are given by:

$$\begin{split} \widetilde{\lambda}_1 &= (0.00230, 0.00258, 0.00287, 0.00302) \ \widetilde{\lambda}_2 = (0.00408, 0.00458, 0.00484, 0.00504) \\ \widetilde{\lambda}_3 &= (0.00265, 0.00294, 0.00325, 0.00352) \\ \text{and} \quad \widetilde{\tau}_1 &= (0.456, 0.500, 0.525, 0.580) \ \widetilde{\tau}_2 = (0.315, 0.360, 0.405, 0.428) \end{split}$$

Fig. 1: Transition diagram of a single unit system

Fuzzy differential equations associated with the above model are given as:

$$\begin{split} &\widetilde{P}_{1}^{'}(t) + \widetilde{\delta}_{1}\widetilde{P}_{1}(t) = \widetilde{\tau}_{1}\widetilde{P}_{2}(t) + \widetilde{\tau}_{2}\widetilde{P}_{3}(t) \\ &\widetilde{P}_{2}^{'}(t) + \widetilde{\delta}_{2}\widetilde{P}_{2}(t) = \lambda_{1}\widetilde{P}_{1}(t)\ \widetilde{P}_{3}^{'}(t) + \widetilde{\tau}_{2}\widetilde{P}_{3}(t) = \lambda_{3}\widetilde{P}_{1}(t) \end{split}$$
 Where $\widetilde{\delta}_{1} = \widetilde{\lambda}_{1} + \widetilde{\lambda}_{3}$, $\widetilde{\delta}_{2} = \widetilde{\lambda}_{2} + \widetilde{\tau}_{1}$

With initial conditions

$$\widetilde{P}_{i}(0) = (0.945, 0.955, 0.965, 0.975) \ \widetilde{P}_{i}(0) = (0,0,0,0)$$
 for $i = 2, 3$

Fuzzy availability by traditional method

The fuzzy differential equations stated above are solved by the traditional method of α -cuts. The implicit solutions (\tilde{p}_i , i=1,2,3) thus obtained are used to calculate the fuzzy availability mathematically as $\tilde{A}(t) = \tilde{P}_1(t) \oplus \tilde{P}_2(t)$. The numerical values of the availability are shown in the following table

Table 1

Fuzzy —	At t=24		At t=48		At t=72		At t=96		At t=120	
Availability	$\tilde{A}_{\mathrm{l}}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\widetilde{A}_{\mathrm{l}}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\tilde{A}_{1}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\widetilde{A}_{\mathrm{l}}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_{\mathrm{l}}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$
α										
0	0.945	0.9755	0.9448	0.9749	0.944	0.974	0.943	0.973	0.943	0.973
	34	2	8	2	42	32	97	72	51	12

0.2	0.947	0.9735	0.9469	0.9729	0.946	0.972	0.945	0.971	0.945	0.971
	38	5	0	4	43	35	96	75	49	15
0.4	0.949	0.9715	0.9489	0.9709	0.948	0.970	0.947	0.969	0.947	0.969
	41	7	3	7	44	37	96	77	47	17
0.5	0.950	0.9705	0.9499	0.9699	0.949	0.969	0.948	0.968	0.948	0.968
	43	8	4	8	44	38	95	78	46	19
0.6	0.951	0.9696	0.9509	0.9690	0.950	0.968	0.949	0.967	0.949	0.967
	45	0	5	0	45	40	95	80	45	20
0.8	0.953	0.9682	0.9529	0.9676	0.952	0.967	0.951	0.966	0.951	0.965
	48	4	6	4	45	04	94	44	42	84

Graphical representation

Fig.2: Fuzzy availability by traditional method

3.2. Fuzzy Availability by proposed method

The fuzzy differential equations stated above are solved by the method of α -cuts by replacing the traditional trapezoidal fuzzy numbers with trapezoidal fuzzy numbers of different left and right height. The implicit solutions (\tilde{p}_i , i=1,2,3) thus obtained are used to calculate the fuzzy availability mathematically as $\tilde{A}(t) = \tilde{P}_1(t) \oplus \tilde{P}_2(t)$. The numerical values of the availability are shown in the following table. Availability thus obtained is represent graphically in Fig. 3

T	'abl	le	2

Fuzzy	At t=24		At t=48		At t=72		At t=96		At t=120	
Availabil										
ity⊥	$\widetilde{A}_1(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\widetilde{A}_1(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\widetilde{A}_{\mathrm{l}}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\widetilde{A}_{\mathrm{l}}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_{\mathrm{l}}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$
A										
0	0.945	0.975	0.944	0.974	0.944	0.974	0.943	0.973	0.943	0.973
	34	52	88	92	42	32	97	72	51	12
0.2	0.949	0.973	0.948	0.972	0.948	0.971	0.947	0.971	0.947	0.970

	41	05	93	45	44	85	96	25	47	65
0.4	0.953	0.970	0.952	0.969	0.952	0.969	0.951	0.968	0.951	0.968
	48	58	96	98	45	38	94	78	42	19
0.5	0.955	0.969	0.954	0.968	0.954	0.968	0.953	0.967	0.953	0.966
	51	35	98	75	45	15	92	55	39	95
0.6	0.958	0.968	0.958	0.967	0.957	0.966	0.957	0.966	0.956	0.965
	89	12	34	52	79	92	23	32	68	72
0.8	0.965	0.965	0.965	0.965	0.964	0.964	0.963	0.963	0.963	0.963
	65	65	05	05	45	45	85	85	25	25

Graphical Representation

Fig. 3: Fuzzy Availability by proposed method

Advantages of proposed method over traditional method

One may observe that the availability obtained by the proposed method asserts more fuzziness. To include more fuzziness in data available with the system we consider α -cuts for α <1. This deals with those situations when there is no precise information or there is more hesitation with the information available with the system. Fig 2 indicates that only those values of availability are admissible which bear higher degree of membership. Therefore, in traditional method the data must have high degree of acceptance to achieve sustainable availability. On the other handFig 3 indicates that those values of availability are acceptable which has lower degree of membership. This conclude that if we couple λ - τ methodology with trapezoidal number of different left and right height then system can be made available for longer period of its run time.

System description, notations and assumptions of gas turbine system

In this section, a detailed description of the gas turbine system and its subsystem is given along with notations and assumptions which are used to analyze the fuzzy availability and fuzzy profit.

System description

Gas Turbine system is one of the most widely used powergenerating system. It is a type of internal combustion engine which produce hot gases to spin a turbine to produce power. A gas turbine system can utilize a variety of fuels including natural gas, fossil fuel and synthetic fuel. Gas turbine system consists ofsixsub-systems like air inlet subsystem, compressor subsystem, combustion chamber subsystem, turbine subsystem, electric generator or alternator subsystem, governing subsystem.

The operations that are performed on these sub-systems are as follows:

Sub-system A (**Air inlet subsystem**): Air inlet subsystem is essential successful operation of a gas turbine system. It protects gas turbine system from impurities and dust in the air which may reduce the efficiency and output of the plant. It provides clean air into the compressor subsystem. A blade cleaning system comprising of a high pressure pump provides cleaning facility for the compressor blades.

Sub-system *B* (**Compressor subsystem**): The Role of this system is to sucks air from the atmosphere and compresses it to pressures in the range of 15 to 20 bar and feeds it to the combustion chamber. It consists of a number of rows of blades mounted on a shaft like a series of fans placed one after the other.

Sub-system C (Combustion chamber subsystem): A combustion chamber or combustor subsystem is another main component of a gas turbine where combustion takes place. It is typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine system.

Sub-system *D* (**Turbine subsystem**): The turbine subsystem does the main work of energy conversion in a gas power plant. It is intricate array of alternate stationary and rotating aerofoil-section blades. As hot combustion gas expands through the turbine, it spins the rotating blades. The rotating blades perform a dual function as they drive the compressor to draw more pressurized air into the combustion section and they spin a generator to produce electricity.

Sub-system *E* (**Electric generator or alternator subsystem**): The turbine is linked by an axle to a generator, so the generator spins around with the turbine blades. As it spins, the generator uses the kinetic energy from the turbine to make electricity.

Sub-system F (**Governing** /**Starting** subsystem):Starting system provides the initial momentum for the gas turbine system to reach the operating speed. The gas turbine system in a power plant runs at 3000 RPM (for the 50 Hz grid - 3600 RPM for the 60 Hz grid). During starting the speed has to reach at least 60 % for the turbine to work on its own inertia. The simple method is to have a starter motor with a torque converter to bring the heavy mass of the turbine to the required speed.

Notations

The following notations are used to analyze the gas turbine system:

A, B, C, D, E, F Good conditions of the sub-systems

a, b, c, d, e, f Failed state of the sub-systems A, B, C, D, E, and F respectively

 \overline{D} , \overline{E} , and \overline{F} Indicate that the sub-systems D, E, and F are working in reduced capacity.

 $\tilde{\lambda}_i$ (i = 1 to 9) Fuzzy failure rates of A, B, C, D, E, F, \overline{D} , \overline{E} and \overline{F} respectively.

 $\tilde{\tau}_i$ (i=1to9) Fuzzy repair rates of A, B, C, D, E, F, \overline{D} , \overline{E} and \overline{F} respectively.

 $\tilde{P}_i(0)$ Fuzzy probability of the system working with full capacity.

 $\tilde{p}_{i}(t)$, i = 1,...44 Fuzzy probability that the system is in stateS_i at time t.

 $\tilde{P}_{i}^{'}(t)$ Represent the first order derivative with respect to time t.

licates that the system is in good condition.

cates that the system is in reduced state.

cates that the system is in failed state.

Assumptions

- (i) Sub-systems D, E and F completely fail through reduced states.
- (ii) All the subsystems work as good as new after their repair.
- (iii) Fuzzy failure rates and fuzzy repair rates follow general distribution.
- (iv) Fuzzy failure rates and fuzzy repair rates are independent with each other.

Mathematical modeling

In this section, Fuzzy differential equations are developed by using the transition diagram of the gas turbine system which are:

$$\begin{split} &\widetilde{P_1}'(t) + \widetilde{\delta_1}(t)\widetilde{P_1}(t) = \widetilde{g}_1(t)\widetilde{P_9}(t) + \widetilde{g}_2(t)\widetilde{P_{10}}(t) + \widetilde{g}_3(t)\widetilde{P_{11}}(t) + \widetilde{g}_4(t)\widetilde{P_2}(t) + \widetilde{g}_5(t)\widetilde{P_3}(t) + \widetilde{g}_7(t)\widetilde{P_{33}}(t) + \widetilde{g}_8(t)\widetilde{P_{34}}(t) + \widetilde{g}_9(t)\widetilde{P_{38}}(t) + \widetilde{g}_6(t)\widetilde{P_6}(t) \end{split}$$

$$\widetilde{P}_2^{'}(t) + \widetilde{\delta}_2(t)\widetilde{P}_2(t) = \widetilde{g}_1(t)\widetilde{P}_{12}(t) + \widetilde{g}_2(t)\widetilde{P}_{13}(t) + \widetilde{g}_3(t)\widetilde{P}_{14}(t) + \widetilde{g}_8(t)\widetilde{P}_{35}(t) + \widetilde{g}_9(t)\widetilde{P}_{37}(t) + \widetilde{f}_4(t)\widetilde{P}_1(t)$$

$$\widetilde{P}_{3}^{'}(t)+\widetilde{\delta}_{3}(t)\widetilde{P}_{3}(t)=\widetilde{g}_{1}(t)\widetilde{P}_{15}(t)+\widetilde{g}_{2}(t)\widetilde{P}_{16}(t)+\widetilde{g}_{3}(t)\widetilde{P}_{17}(t)+\widetilde{g}_{9}(t)\widetilde{P}_{39}(t)+\widetilde{g}_{7}(t)\widetilde{P}_{36}(t)+\widetilde{f}_{5}(t)\widetilde{P}_{1}(t)$$

$$\widetilde{P}_{4}^{'}(t)+\widetilde{\delta}_{4}(t)\widetilde{P}_{4}(t)=\widetilde{g}_{1}(t)\widetilde{P}_{21}(t)+\widetilde{g}_{2}(t)\widetilde{P}_{22}(t)+\widetilde{g}_{3}(t)\widetilde{P}_{23}(t)+\widetilde{g}_{9}(t)\widetilde{P}_{44}(t)+\widetilde{f}_{4}(t)\widetilde{P}_{3}(t)+\widetilde{f}_{5}(t)\widetilde{P}_{2}(t)$$

$$\widetilde{P}_5^{'}(t) + \widetilde{\delta}_5(t)\widetilde{P}_5(t) = \widetilde{g}_1(t)\widetilde{P}_{24}(t) + \widetilde{g}_2(t)\widetilde{P}_{25}(t) + \widetilde{g}_3(t)\widetilde{P}_{26}(t) + \widetilde{g}_8(t)\widetilde{P}_{42}(t) + \widetilde{f}_4(t)\widetilde{P}_6(t) + \widetilde{f}_6(t)\widetilde{P}_2(t)$$

$$\widetilde{P}_{6}^{'}(t)+\widetilde{\delta}_{6}(t)\widetilde{P}_{6}(t)=\widetilde{g}_{1}(t)\widetilde{P}_{18}(t)+\widetilde{g}_{2}(t)\widetilde{P}_{19}(t)+\widetilde{g}_{3}(t)\widetilde{P}_{20}(t)+\widetilde{g}_{7}(t)\widetilde{P}_{40}(t)+\widetilde{g}_{8}(t)\widetilde{P}_{41}(t)+\widetilde{f}_{6}(t)\widetilde{P}_{1}(t)$$

$$\widetilde{P_7}'(t) + \widetilde{\delta_7}(t) \widetilde{P_7}(t) = \widetilde{g}_1(t) \widetilde{P}_{27}(t) + \widetilde{g}_2(t) \widetilde{P}_{28}(t) + \widetilde{g}_3(t) \widetilde{P}_{29}(t) + \widetilde{g}_7(t) \widetilde{P}_{43}(t) + \widetilde{f}_5(t) \widetilde{P}_6(t) + \widetilde{f}_6(t) \widetilde{P}_3(t)$$

$$\begin{split} \widetilde{P}_{8+i}^{'}(t) + \widetilde{\phi}_{8}(t) \widetilde{P}_{8}(t) &= g_{1}(t) \widetilde{P}_{30}(t) + \widetilde{g}_{2}(t) \widetilde{P}_{31}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{32}(t) + \widetilde{f}_{4}(t) \widetilde{P}_{5}(t) + \widetilde{f}_{6}(t) \widetilde{P}_{6}(t) \\ \widetilde{P}_{8+i}^{'}(t) + \widetilde{g}_{i}(t) \widetilde{P}_{8+i}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{i}(t), i = 1, 2, 3 \\ \widetilde{P}_{11+i}^{'}(t) + \widetilde{g}_{i}(t) \widetilde{P}_{11+i}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{2}(t), i = 1, 2, 3 \\ \widetilde{P}_{12+i}^{'}(t) + \widetilde{g}_{i}(t) \widetilde{P}_{11+i}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{12+i}^{'}(t) + \widetilde{g}_{i}(t) \widetilde{P}_{11+i}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{6}(t), i = 1, 2, 3 \\ \widetilde{P}_{3-i}^{'}(t) + \widetilde{g}_{i}(t) \widetilde{P}_{31+i}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{23+i}^{'}(t) + \widetilde{g}_{i}(t) \widetilde{P}_{23+i}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{23+i}^{'}(t) + \widetilde{g}_{i}(t) \widetilde{P}_{23+i}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{23+i}^{'}(t) + \widetilde{g}_{i}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{33}^{'}(t) + \widetilde{g}_{i}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{33}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}^{'}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde{g}_{3}^{'}(t) \widetilde{P}_{33}(t) &= \widetilde{f}_{i}(t) \widetilde{P}_{3}^{'}(t), i = 1, 2, 3 \\ \widetilde{P}_{35}^{'}(t) + \widetilde$$

Fig.4: State transition diagram

$$\begin{split} \widetilde{\delta}_3(t) &= \widetilde{f}_1(t) + \widetilde{f}_2(t) + \widetilde{f}_3(t) + \widetilde{f}_4(t) + \widetilde{f}_6(t) + \widetilde{f}(t)_8 + \widetilde{g}_5(t) \\ \widetilde{\delta}_4(t) &= \widetilde{f}_1(t) + \widetilde{f}_2(t) + \widetilde{f}_3(t) + \widetilde{f}_6(t) + \widetilde{f}_7(t) + \widetilde{f}_8(t) \\ \widetilde{\delta}_5(t) &= \widetilde{f}_1(t) + \widetilde{f}_2(t) + \widetilde{f}_3(t) + \widetilde{f}_5(t) + \widetilde{f}_7(t) + \widetilde{f}_9(t) \\ \widetilde{\delta}_6(t) &= \widetilde{f}_1(t) + \widetilde{f}_2(t) + \widetilde{f}_3(t) + \widetilde{f}_4(t) + \widetilde{f}_5(t) + \widetilde{f}_9(t) \\ \widetilde{\delta}_7(t) &= \widetilde{f}_1(t) + \widetilde{f}_2(t) + \widetilde{f}_3(t) + \widetilde{f}_4(t) + \widetilde{f}_8(t) + \widetilde{f}_9(t) \\ \widetilde{\delta}_8(t) &= \widetilde{f}_1(t) + \widetilde{f}_2(t) + \widetilde{f}_3(t) + \widetilde{f}_7(t) + \widetilde{f}_8(t) + \widetilde{f}_9(t) \\ \end{split}$$
 with fuzzy initial conditions

$$\widetilde{P}_1(0) = (0.985, 0.990, 0.995, 1)$$

and
 $\widetilde{P}_i(0) = (0,0,0,0)$ for $i = 2,3,4 \dots 44$

Fuzzy failure rates and repair rates of gas turbine system

Fuzzyfailure and fuzzy repair rates (represented by trapezoidal fuzzy numbers) used for analyzing the fuzzy availability and fuzzy profit of the gas turbine system are given in the following table:

Table 3

Fuzzy failure rates	Fuzzy repair rates
$\widetilde{\lambda}_1 = (0.000575, 0.000675, 0.000775, 0.000875)$	$\tilde{\tau}_1 = (0.1035, 0.1040, 0.1045, 0.1050)$
$\tilde{\lambda}_2 = (0.000345, 0.000445, 0.000545, 0.000645)$	$\tilde{\tau}_2 = (0.023, 0.024, 0.025, 0.026)$
$\widetilde{\lambda}_3 = (0.0026, 0.0027, 0.0028, 0.0029)$	$\tilde{\tau}_3 = (0.0575, 0.0675, 0.0775, 0.0875)$
$\widetilde{\lambda}_4 = (0.0010, 0.0011, 0.0013, 0.0014)$	$\tilde{\tau}_4 = (0.0816, 0.0817, 0.0819, 0.0820)$
$\widetilde{\lambda}_5 = (0.0030, 0.0034, 0.0038, 0.0042)$	$\tilde{\tau}_5 = (0.01720, 0.01730, 0.01740, 0.01750)$
$\widetilde{\lambda}_6 = (0.000115, 0.000215, 0.000315, 0.000415)$	$\tilde{\tau}_6 = (0.03570, 0.03580, 0.03590, 0.03600)$
$\widetilde{\lambda}_7 = (0.000805, 0.000810, 0.000815, 0.000820)$	$\tilde{\tau}_7 = (0.0805, 0.0810, 0.0815, 0.0820)$
$\widetilde{\lambda}_8 = (0.000575, 0.000675, 0.000775, 0.000875)$	$\tilde{\tau}_8 = (0.0280, 0.0285, 0.0290, 0.0295)$
$\widetilde{\lambda}_9 = (0.0010, 0.0011, 0.0013, 0.0014)$	$\tilde{\tau}_9 = (0.1035, 0.1040, 0.1045, 0.1050)$

Results and discussion

To show the importance of results and characterize the behavior of availability and profit of the gas turbine system, here we assume that all random variables as Weibull distributed with two parameters. Probability density function of Weibull distribution with two parameters is given by

$$\widetilde{f}_i(t) = k\lambda_i (\lambda_i t)^{k-1} \exp[-(\lambda_i t)^k], \qquad t \ge 0, \quad \lambda > 0$$
where i=1,2......9
$$\widetilde{g}_i(t) = k\tau_i (\tau_i t)^{k-1} \exp[-(\tau_i t)^k], \qquad t \ge 0, \quad \lambda > 0$$

Where k and λ are positive constants and are known as shape and scale parameters respectively. From the properties of Weibull distribution, If k=1, it become the exponential distribution and when k=2, it become the Rayleigh distribution and if k<1 it is Weibull distribution.

Fuzzy availability analysis of gas Turbine system

Using the fuzzy probabilities for the gas turbine system, the α -cuts for α <1 corresponding to fuzzy availability $\tilde{A}(t) = \tilde{P}_1(t) \oplus \tilde{P}_2(t) \oplus \tilde{P}_3(t) \oplus \tilde{P}_4(t) \oplus \tilde{P}_5(t) \oplus \tilde{P}_6(t) \oplus \tilde{P}_7(t) \oplus \tilde{P}_8(t)$ of gas turbine system are computed at different time with $\mu_L = 0.5$ and $\mu_R = 0.8$ are:

 $\tilde{A}(t)$ of $\tilde{A}(t)$ of Fuzzy exponential $\tilde{A}(t)$ of Rayleigh Weibull Availability distribution distribution distribution α ↓ $\tilde{A}_1(t,\alpha)$ $\tilde{A}_2(t,\alpha)$ $\tilde{A}_{1}(t,\alpha)$ $\tilde{A}_2(t,\alpha)$ $\tilde{A}_1(t,\alpha)$ $\tilde{A}_2(t,\alpha)$ 0.946022 0.965050 0.962917 0.960251 0.978721 0.943684 0 0.2 0.948589 0.960992 0.962987 0.976616 0.963126 0.946283 0.975293 0.4 0.951128 0.961616 0.948850 0.959486 0.965073 0.5 0.950125 0.958714 0.966278 0.974551 0.952388 0.960842 0.6 0.954534 0.959997 0.952275 0.957948 0.968327 0.973796 0.8 0.958574 0.958574 0.956408 0.956408 0.972293 0.972293

Table 4: Fuzzy availability of gas turbine system at 24 months

Table 5: Fuzzy availability of gas turbine system at 48 months

Fuzzy -	$\widetilde{A}(t)$ of exponential		$\widetilde{A}(t)$ of	Rayleigh	$\tilde{A}(t)$ of	Weibull
Availability	distribution		distribution		distribution	
α 🗼	$\widetilde{A}_{\mathrm{l}}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_1(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\widetilde{A}_{l}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$
0	0.934289	0.954527	0.932899	0.953075	0.945996	0.965023
0.2	0.937257	0.952615	0.935876	0.951197	0.949024	0.962876
0.4	0.940106	0.951115	0.938731	0.949721	0.951093	0.961593
0.5	0.941493	0.950311	0.940115	0.948962	0.952359	0.960842
0.6	0.943792	0.949472	0.942401	0.948201	0.954480	0.960088
0.8	0.948028	0.948028	0.946657	0.946657	0.958563	0.958564

Table 6: Fuzzy availability of gas turbine system at 72 months

Fuzzy -	$\widetilde{A}(t)$ of	exponential	$\tilde{A}(t)$ of	Rayleigh	$\tilde{A}(t)$ of	Weibull
Availability	distribution		distribution		distribution	
$\alpha \downarrow$	$\tilde{A}_{\rm l}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_{1}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_1(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$
0	0.930147	0.950077	0.929330	0.948944	0.938476	0.958365
0.2	0.933217	0.948250	0.932358	0.947162	0.941800	0.956204
0.4	0.936105	0.946836	0.935203	0.945777	0.943996	0.954912
0.5	0.937489	0.946046	0.936563	0.945060	0.945332	0.954146
0.6	0.939761	0.945255	0.938795	0.944339	0.947579	0.953393
0.8	0.943879	0.943879	0.942874	0.942874	0.951829	0.951829

Table 7: Fuzzy availability of gas turbine system at 96 months

Fuzzy	$\tilde{A}(t)$ of	exponential	$\tilde{A}(t)$ of	Rayleigh	$\widetilde{A}(t)$ of	Weibull
Availability	distribution		distribution		distribution	
α 🗼	$\widetilde{A}_{1}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_{1}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_1(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$
0	0.928276	0.947581	0.927743	0.946680	0.934253	0.954485

0.2	0.931314	0.945817	0.930715	0.944961	0.937762	0.952364
0.4	0.934143	0.944465	0.933488	0.943643	0.940044	0.951084
0.5	0.935491	0.943702	0.934807	0.942957	0.941421	0.950322
0.6	0.937687	0.942954	0.936964	0.942268	0.943724	0.949588
0.8	0.941645	0.941645	0.940866	0.940866	0.948027	0.948027

Table 8: Fuzzy availability of gas turbine system at 120 months

			<u> </u>	• •	•	
Fuzzy -	$\tilde{A}(t)$ of	exponential	$\tilde{A}(t)$ of	Rayleigh	$\tilde{A}(t)$ of	Weibull
Availability	distribution		distribution		distribution	
α 🗼						
•	$\widetilde{A}_{1}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_1(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_{1}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$
0	0.927260	0.946039	0.926887	0.945319	0.931723	0.951904
0.2	0.930242	0.944317	0.929799	0.943638	0.935316	0.949834
0.4	0.933006	0.943010	0.932515	0.942365	0.937627	0.948581
0.5	0.934319	0.942262	0.933796	0.941699	0.939012	0.947829
0.6	0.936451	0.941544	0.935888	0.941032	0.941314	0.947129
0.8	0.940283	0.940283	0.939671	0.939671	0.945594	0.945594

Graphical representation

Fig. 5:Fuzzy availability of gas turbine systemfor weibull distribution

Fig. 6: Fuzzy availability of gas turbine systemfor exponential distribution

Fig. 7: Fuzzy availability of gas turbine systemfor Rayleigh distribution

Profit Analysis

Any manufacturing industry is basically a profit making organization and no organization can survive for long without minimum financial return for its investment .There must be an optimal balance between the reliability aspect of a product and its cost. The revenue and cost function leads to profit function of an organization, as the profit is excess of revenue over the cost of production. Profit equation is given as

 $P=K_0A_0-R$

where P= Profit per unit time incurred to the system.

 $K_{0=}$ The revenue per unit up time of the system.

 $A_{0=}$ The total fraction of time for which the system is up.

R= Total repair cost.

Trapezoidal Fuzzy numbers associated with revenue per unit up time and total repair cost are:

$$\widetilde{K}_0 = (2000,2400,2800,3200) \ \widetilde{R} = (500,520,540,560)$$

Table 9: Fuzzy profit gas turbine systemat different time for exponential distribution

	-	At t=24		At t=48		At t=72	2	At t=96		At t=120)
Pro	ofit										
α	\downarrow	$\tilde{P}_1(t,\alpha)$	$\tilde{P}_2(t,\alpha)$	$\widetilde{P}_1(t,\alpha)$	$\tilde{P}_2(t,\alpha)$	$\tilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,\alpha)$	$\widetilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,\alpha)$	$\widetilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,\alpha)$

0	1332.0	2395.	1308.5	2363.	1300.	2350.2	1296.5	2342.	1294.5	2338.1
	4	15	7	56	29	3	5	74	2	1
0.2	1493.9	2333.	1469.4	2302.	1460.	2289.3	1456.6	2282.	1454.3	2277.7
	5	22	7	21	74	3	3	16	2	3
0.4	1656.6	2272.	1631.0	2242.	1621.	2229.8	1617.2	2222.	1614.5	2218.7
	1	68	4	23	76	0	1	94	7	2
0.5	1737.7	2242.	1711.5	2212.	1701.	2199.8	1697.1	2193.	1694.3	2189.0
	3	42	7	14	97	8	7	14	6	0
0.6	1872.8	2208.	1845.6	2178.	1835.	2166.9	1830.1	2160.	1827.0	2156.4
	2	99	2	99	41	7	6	41	3	0
0.8	2144.0	2144.	2114.4	2114.	2102.	2102.8	2096.6	2096.	2092.7	2092.7
	0	00	7	47	86	6	0	60	9	9

Table 10: Fuzzy profit gas turbine system at different time for Rayleigh distribution

Fuzzy	At t=24		At t=48		At t=72	2	At t=96	Ó	At t=120	0
Profit										
α ↓	$\widetilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,\alpha)$	$\widetilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,\alpha)$	$\widetilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,\alpha)$	$\tilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,\alpha)$	$\widetilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,\alpha)$
0	1327.3	2388.	1305.7	2359.	1298.	2346.8	1295.	2340.0	1293.7	2335.9
	6	75	9	21	66	3	48	4	7	5
0.2	1488.9	2326.	1466.4	2298.	1458.	2286.1	1455.	2279.6	1453.3	2275.7
	7	92	9	03	89	2	34	3	6	3
0.4	1651.3	2266.	1627.8	2238.	1619.	2226.7	1615.	2220.5	1613.4	2216.8
	3	49	5	19	67	5	69	6	2	5
0.5	1732.2	2236.	1708.2	2208.	1699.	2197.0	1695.	2191.0	1693.1	2187.3
	8	30	6	26	75	4	53	0	1	8

0.6	1867.1	2203.	1842.1	2175.	1832.	2164.3	1828.	2158.4	1825.6	2154.9
	1	15	0	37	96	6	32	6	0	3
0.8	2137.9	2137.	2110.6	2110.	2100.	2100.0	2094.	2094.4	2091.0	2091.0
	4	94	4	64	04	4	42	2	7	7

Table 11: Fuzzyprofit gas turbine systemat different time for Weibull distribution

Fuzzy	At t	=24	At t	=48	At	t=72	At	t=96	At t=	=120
Profit $\alpha \downarrow$	$\widetilde{P}_1(t, \alpha)$	$\widetilde{P}_2(t,\alpha)$	$\widetilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,\alpha)$	$\widetilde{P}_1(t,\alpha)$	$\widetilde{P}_{2}(t,lpha)$	$\widetilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,lpha)$	$\tilde{P}_1(t,\alpha)$	$\widetilde{P}_2(t,lpha)$
0	1360.5	2436.	1331.9	2395.	1316.	2375.0	1308.	2363.4	1303.4	2355.7
	0	16	9	06	95	8	50	5	4	1
0.2	1525.0	2373.	1494.8	2332.	1479.	2312.8	1470.	2301.4	1465.2	2294.0
	5	01	9	48	28	0	56	7	8	1
0.4	1688.9	2312.	1656.5	2272.	1640.	2253.2	1630.	2242.1	1625.2	2234.8
	6	35	3	62	07	4	90	4	9	8
0.5	1771.0	2281.	1737.6	2242.	1720.	2223.1	1711.	2212.1	1705.6	2205.0
	6	83	4	42	79	7	41	7	2	0
0.6	1907.7	2248.	1872.6	2209.	1855.	2190.1	1845.	2179.3	1839.3	2172.3
	7	31	9	25	21	7	44	2	4	1
0.8	2182.4	2182.	2143.9	2143.	2125.	2125.1	2114.	2114.4	2107.6	2107.6
	2	42	6	96	12	2	47	7	6	6

Graphical representation

Fig. 8: Fuzzy profit of gas turbine system for weibull distribution

Fig. 9: Fuzzy profit of gas turbine system for exponential distribution

Fig. 10: Fuzzy profit of gas turbine system for rayleigh distribution

Table 12:Effect of fuzzy failure rates of sub-systems on availability of gas turbine system

Fuzzy	→	$\tilde{\lambda}_1 = (0.000575, 0.0)$	00675,0.000775,0.000875)	$\tilde{\lambda}_1 = (0.000625, 0.0000)$	725, 0.000825, 0.000925)	$\tilde{\lambda}_1 = (0.000575, 0.00067)$	5,0.000775,0.000875)	$\tilde{\lambda}_1 = (0.000575, 0.0006)$	75,0.000775,0.000875	$\tilde{\lambda}_1 = (0.000575, 0.00$	0675,0.000775,0.000875)
Availa	ability	$\tilde{\lambda}_2 = (0.000345, 0.000345)$	000445,0.000545,0.000645	$\tilde{\lambda}_2 = (0.000345, 0.000)$	445, 0.000545, 0.000645)	$\tilde{\lambda}_2 = (0.000415, 0.0004$	95, 0.000575, 0.000655	$\tilde{\lambda}_2 = (0.000345, 0.000)$	445, 0.000545, 0.000645	$\tilde{\lambda}_2 = (0.000345, 0.00)$	00445,0.000545,0.000645)
	ac iii o j	$\tilde{\lambda}_3 = (0.0026, 0.002)$	27,0.0028,0.0029)	$\tilde{\lambda}_3 = (0.0026, 0.0027, 0.0027, 0.0027, 0.0027, 0.0026, 0.0027, 0.$	0.0028, 0.0029)	$\tilde{\lambda}_3 = (0.0026, 0.0027, 0.0027)$	0028,0.0029)	$\tilde{\lambda}_3 = (0.0035, 0.0040,$	0.0045, 0.0050)	$\tilde{\lambda}_3 = (0.0026, 0.0027)$	7,0.0028,0.0029)
α .		$\tilde{\lambda}_4 = (0.0010, 0.001)$	11,0.0013,0.0014)	$\tilde{\lambda}_4 = (0.0010, 0.0011, 0.0011, 0.0011)$	0.0013, 0.0014)	$\tilde{\lambda}_4 = (0.0010, 0.0011, 0.0011)$	0013,0.0014)	$\tilde{\lambda}_4 = (0.0010, 0.0011, 0.0011)$	0.0013,0.0014)	$\tilde{\lambda}_4 = (0.0020, 0.003)$	0, 0.0040, 0.0050)
		$\tilde{\lambda}_5 = (0.0030, 0.003)$	34,0.0038,0.0042)	$\tilde{\lambda}_5 = (0.0030, 0.0034, 0.0034)$	0.0038, 0.0042)	$\tilde{\lambda}_5 = (0.0030, 0.0034, 0.0034)$	0038,0.0042)	$\tilde{\lambda}_5 = (0.0030, 0.0034, 0.0034)$	0.0038, 0.0042)	$\tilde{\lambda}_5 = (0.0030, 0.0034)$	1,0.0038,0.0042)
11		$\tilde{\lambda}_6 = (0.000115, 0.00115)$	000215,0.000315,0.000415	$\tilde{\lambda}_6 = (0.000115, 0.000)$	215,0.000315,0.000415)	$\tilde{\lambda}_6 = (0.000115, 0.00021$	15,0.000315,0.000415)	$\tilde{\lambda}_6 = (0.000115, 0.000)$	215,0.000315,0.000415	$\tilde{\lambda}_6 = (0.000115, 0.00)$	00215,0.000315,0.000415)
▼		$\tilde{\lambda}7 = (0.000805, 0.000805)$	000810,0.000815,0.000820	$\tilde{\lambda}7 = (0.000805, 0.000)$	810,0.000815,0.000820)	$\tilde{\lambda}7 = (0.000805, 0.0008)$	10,0.000815,0.000820)	$\tilde{\lambda}7 = (0.000805, 0.000$	810,0.000815,0.000820	$\tilde{\lambda}7 = (0.000805, 0.00)$	00810,0.000815,0.000820)
		$\tilde{\lambda}_8 = (0.000575, 0.000575, 0.00005755, 0.0000575, 0.0000575, 0.000055, 0.000055, 0.000055, 0.000055, 0.000055, 0.000055, 0.0000$	000675, 0.000775, 0.000875)	$\tilde{\lambda}_8 = (0.000575, 0.000)$	675, 0.000775, 0.000875)	$\tilde{\lambda}_8 = (0.000575, 0.00067)$	75,0.000775,0.000875)	$\tilde{\lambda}_8 = (0.000575, 0.000)$	675,0.000775,0.000875	$\tilde{\lambda}_8 = (0.000575, 0.00)$	00675,0.000775,0.000875)
		$\tilde{\lambda}9 = (0.0010, 0.00)$	11,0.0013,0.0014)	$\tilde{\lambda}9 = (0.0010, 0.0011,$	0.0013, 0.0014)	$\tilde{\lambda}9 = (0.0010, 0.0011, 0.$	0013, 0.0014)	$\tilde{\lambda}9 = (0.0010, 0.0011,$	0.0013, 0.0014)	$\tilde{\lambda}9 = (0.0010, 0.001)$	1, 0.0013, 0.0014)
		$\tilde{A}_{l}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\tilde{A}_{ m l}(t,lpha)$	$\widetilde{A}_2(t,\alpha)$	$\tilde{A}_{\mathrm{l}}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\tilde{A}_{ m l}(t,lpha)$	$\tilde{A}_2(t,\alpha)$	$\tilde{A}_{\mathrm{l}}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$
0	Expone	0.92970	0.9422128	0.9292776	0.9417904	0.9278722	0.941963	0.9167965	0.921503	0.929607	0.9417895
	ntial	169	3	5	3	8	93	0	61	17	8
	Distribu										

	tion										
	Rayleig	0.92832	0.9409502	0.9279066	0.9405330	0.9263800	0.940691	0.9133002	0.922182	0.926284	0.9406109
	h	880	5	9	4	6	86	6	9	38	2
	Distribu										
	tion										
	Weibull	0.94137	0.9526436	0.9409790	0.9522472	0.9401967	0.952493	0.9306556	0.933462	0.941313	0.9524162
	Distribu	688	0	8	6	1	36	4	29	11	2
	tion										
0.2	Expone	0.93165	0.9414725	0.9312340	0.9408992	0.9300479	0.940946	0.9172918	0.921051	0.931505	0.9409274
	ntial	802	8	1	1	0	48	9	92	24	2
	Distribu										
	tion										
	Rayleig	0.93023	0.9411038	0.9298165	0.9396721	0.9285264	0.939761	0.9158140	0.922034	0.930107	0.9400342
	h	826	5	6	3	0	25	0	28	16	1
	Distribu										
	tion										
	Weibull	0.94295	0.9517624	0.9425551	0.9516890	0.9419128	0.951462	0.9307932	0.933276	0.942866	0.9518452
	Distribu	280	5	8	2	2	79	2	10	20	7
	tion										
0.4	Expone	0.93353	0.9404255	0.9331081	0.9400024	0.9321386	0.939923	0.9178690	0.920622	0.933337	0.9400586
	ntial	209	1	6	3	1	54	0	60	22	4
	Distribu										
	tion										
	Rayleig	0.93223	0.9400231	0.9318178	0.9384387	0.9307587	0.`93832	0.9163827	0.921489	0.932072	0.9394762
	h	864	5	5	5	2	45	1	32	32	1
	Distribu										
	tion										

	*** 11 11	0.04047	0.0510045	0.0442077	0.0504500	0.0420141	0.050205	0.0211001	0.022046	0.042061	0.0502052
	Weibull	0.94347	0.9510945	0.9443977	0.9504782	0.9430141	0.950387	0.9311901	0.933046	0.943961	0.9503872
	Distribu	058	2	4	4	0	26	2	27	41	1
	tion										
0.5	Expone	0.93442	0.9398919	0.9340053	0.9394686	0.9331430	0.939325	0.9181722	0.920351	0.934213	0.9395391
	ntial	920	1	3	3	7	26	1	34	13	6
	Distribu										
	tion										
	Rayleig	0.93303	0.9397865	0.9326179	0.9378561	0.9316739	0.937906	0.9166925	0.920935	0.932854	0.9388561
	h	856	8	4	2	5	54	0	21	63	2
	Distribu										
	tion										
	Weibull	0.94587	0.9501896	0.9465932	0.9499256	0.9449072	0.949782	0.9315834	0.932678	0.945647	0.9493874
	Distribu	290	8	0	8	5	65	0	39	82	6
	tion										
0.6	Expone	0.93589	0.9391757	0.9354683	0.9390720	0.9347741	0.938865	0.9186670	0.920190	0.935645	0.9393292
	ntial	297	3	5	3	4	36	8	21	65	9
	Distribu										
	tion										
	Rayleig	0.93448	0.9386549	0.9340642	0.9371138	0.9333097	0.937021	0.9172302	0.919847	0.934274	0.9381490
	h	425	7	2	2	4	65	4	23	70	3
	Distribu		,		_						
	tion										
	Weibull	0.94740	0.9499762	0.9480621	0.9491872	0.9467398	0.949183	0.9319867	0.932287	0.946873	0.9490283
	Distribu	050	4	4	0.5151072	3	62	2	34	58	7
	tion	0.50	'				02				,
0.8	Expone	0.93864	0.9386432	0.9382198	0.9382198	0.9378838	0.937883	0.9198646	0.919864	0.938394	0.9383944
0.8	ntial	320	0.9380432	0.9382198	0.9362196	8	88	4	64	40	0.9363944
	mual	320	U	U	U	O	00	+	04	40	U

Distribu										
tion										
Rayleig	0.93731	0.9373157	0.9368968	0.9368968	0.9365148	0.936514	0.9184751	0.918475	0.937056	0.9370565
h	577	7	1	1	0	80	1	11	54	4
Distribu										
tion										
Weibull	0.94902	0.9490241	0.9486272	0.9486272	0.9485360	0.948536	0.9321331	0.932133	0.948853	0.9488533
Distribu	415	5	8	8	9	09	4	14	31	1
tion										

Fuzzy	→	$\tilde{\lambda}_1 = (0.000575, 0.000)$	0675,0.000775,0.000875)	$\tilde{\lambda}_1 = (0.000575, 0.000675)$	5,0.000775,0.000875)	$\tilde{\lambda}_1 = (0.000575, 0.000675)$	5,0.000775,0.000875)	$\tilde{\lambda}_1 = (0.000575, 0.0006)$	75,0.000775,0.000875)	$\tilde{\lambda}_1 = (0.000575, 0.000)$	0675,0.000775,0.000875)
Availa	bility	$\tilde{\lambda}_2 = (0.000345, 0.00)$	0445,0.000545,0.000645	$\tilde{\lambda}_2 = (0.000345, 0.00044)$	5,0.000545,0.000645)	$\tilde{\lambda}_2 = (0.000345, 0.00044)$	5,0.000545,0.000645)	$\tilde{\lambda}_2 = (0.000345, 0.0004)$	445,0.000545,0.000645	$\tilde{\lambda}_2 = (0.000345, 0.00)$	0445,0.000545,0.000645)
α		$\tilde{\lambda}_3 = (0.0026, 0.0027)$,0.0028,0.0029)	$\tilde{\lambda}3 = (0.0026, 0.0027, 0.0$	028, 0.0029)	$\tilde{\lambda}_3 = (0.0026, 0.0027, 0.0$	028, 0.0029)	$\tilde{\lambda}_3 = (0.0026, 0.0027, 0.0027, 0.0027, 0.0027, 0.0026, 0.0027, 0.$.0028, 0.0029)	$\tilde{\lambda}_3 = (0.0026, 0.0027)$,0.0028,0.0029)
"		$\tilde{\lambda}_4 = (0.0010, 0.0011)$,0.0013,0.0014)	$\tilde{\lambda}_4 = (0.0010, 0.0011, 0.001)$	013,0.0014)	$\tilde{\lambda}_4 = (0.0010, 0.0011, 0.0011)$	013,0.0014)	$\tilde{\lambda}_4 = (0.0010, 0.0011, 0.0011, 0.0011)$	0.0013, 0.0014)	$\tilde{\lambda}_4 = (0.0010, 0.0011)$,0.0013,0.0014)
		$\tilde{\lambda}_5 = (0.0056, 0.0065)$	5, 0.0074, 0.0083)	$\tilde{\lambda}_5 = (0.0030, 0.0034, 0.0)$	038,0.0042)	$\tilde{\lambda}_5 = (0.0030, 0.0034, 0.0$	038,0.0042)	$\tilde{\lambda}_5 = (0.0030, 0.0034, 0$.0038,0.0042)	$\tilde{\lambda}_5 = (0.0030, 0.0034)$,0.0038,0.0042)
▼		$\tilde{\lambda}_6 = (0.000115, 0.00$	0215,0.000315,0.000415)	$\tilde{\lambda}_6 = (0.000140, 0.00022)$	20, 0.000300, 0.000420)	$\tilde{\lambda}_6 = (0.000115, 0.00021$	5,0.000315,0.000415)	$\tilde{\lambda}_6 = (0.000115, 0.0002)$	215,0.000315,0.000415)	$\tilde{\lambda}_6 = (0.000115, 0.00$	0215,0.000315,0.000415)
		$\tilde{\lambda}7 = (0.000805, 0.00085, 0.$	0810,0.000815,0.000820	$\tilde{\lambda}7 = (0.000805, 0.00081$	0,0.000815,0.000820)	$\tilde{\lambda}7 = (0.000850, 0.0008)$	70, 0.000890, 0.000920)	$\tilde{\lambda}7 = (0.000805, 0.000805)$	810, 0.000815, 0.000820	$\tilde{\lambda}7 = (0.000805, 0.00$	0810,0.000815,0.000820)
		$\tilde{\lambda}_8 = (0.000575, 0.00$	0675,0.000775,0.000875)	$\tilde{\lambda}_8 = (0.000575, 0.00067)$	5,0.000775,0.000875)	$\tilde{\lambda}_8 = (0.000575, 0.00067)$	5,0.000775,0.000875)	$\tilde{\lambda}_8 = (0.000600, 0.000)$	650, 0.000700, 0.000900) $\tilde{\lambda}_8 = (0.000575, 0.00)$	0675,0.000775,0.000875)
		$\tilde{\lambda}9 = (0.0010, 0.001)$	1, 0.0013, 0.0014)	$\tilde{\lambda}9 = (0.0010, 0.0011, 0.001)$	0013, 0.0014)	$\tilde{\lambda}9 = (0.0010, 0.0011, 0.0011)$	0013, 0.0014)	$\tilde{\lambda}9 = (0.0010, 0.0011, 0.0011)$	0.0013, 0.0014)	$\tilde{\lambda}9 = (0.0025, 0.0035)$	5, 0.0045, 0.0055)
		$\tilde{A}_{\mathbf{l}}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\widetilde{A}_{1}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_{1}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\tilde{A}_{l}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\tilde{A}_{\mathrm{l}}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$
0	Expone	0.929026	0.9406817	0.9296974	0.9422105	0.9296963	0.942193	0.9296651	0.942163	0.929673	0.9417355
	ntial	89	0	1	6	6	35	6	41	22	5
	Distrib										
	ution										
	Rayleig	0.925606	0.9392501	0.9263754	0.9409489	0.9263745	0.940933	0.9263367	0.940892	0.926350	0.9406723
	h	87	6	1	5	5	40	9	32	19	9
	Distrib										
	ution										

	XX7 '1 11	0.041116	0.0520.422	0.0412744	0.0506400	0.0412722	0.050600	0.0412622	0.050604	0.041260	0.0524064
	Weibull	0.941116	0.9520422	0.9413744	0.9526402	0.9413732	0.952632	0.9413632	0.952624	0.941360	0.9524864
	Distrib	32	7	4	4	9	54	9	97	39	9
	ution										
0.2	Expone	0.930872	0.9398715	0.9316522	0.9413172	0.9316508	0.941303	0.9316503	0.941249	0.931571	0.9408951
	ntial	48	3	0	9	6	88	2	20	36	4
	Distrib										
	ution										
	Rayleig	0.929355	0.9389321	0.9302348	0.9397183	0.9302317	0.939652	0.9302288	0.940564	0.930189	0.9399452
	h	56	7	7	7	8	35	5	75	11	0
	Distrib										
	ution										
	Weibull	0.942658	0.9506453	0.9429510	0.9517825	0.9429485	0.951762	0.9429504	0.951573	0.942925	0.9519657
	Distrib	12	2	8	3	8	50	9	46	36	2
	ution										
0.4	Expone	0.932645	0.9390506	0.9335289	0.9404189	0.9335237	0.940409	0.9335240	0.940330	0.933403	0.9400467
	ntial	27	8	0	3	4	24	4	62	28	5
	Distrib										
	ution										
	Rayleig	0.931242	0.9383921	0.9322367	0.9392654	0.9322311	0.939237	0.9322338	0.939973	0.932164	0.9389325
	h	99	7	7	3	5	15	6	45	41	1
	Distrib		,	,							
	ution										
	Weibull	0.944140	0.9501835	0.9444696	0.9511893	0.9424656	0.950678	0.9454559	0.950298	0.944629	0.9511809
	Distrib	84	6	4	4	9	23	1	16	64	3
	ution	0-1	0	7	7		23	1	10	04	
0.5		0.933489	0.9385560	0.9344274	0.9398843	0.9344202	0.939876	0.9344209	0.939786	0.934276	0.9395402
0.5	Expone										
	ntial	93	9	0	0	2	31	8	27	44	7

	- · ·	I	I	Ī	T	T		T	ı		I 1
	Distrib										
	ution										
	Rayleig	0.931984	0.9375812	0.9330348	0.9388753	0.9330305	0.938573	0.9330027	0.938578	0.932740	0.9384734
	h	81	5	5	7	5	25	8	06	87	0
	Distrib										
	ution										
	Weibull	0.946527	0.9497542	0.9457392	0.9504873	0.9449365	0.949673	0.9469453	0.949786	0.946270	0.9506782
	Distrib	375	8	4	2	2	54	6	74	92	3
	ution										
0.6	Expone	0.934860	0.9383282	0.9358906	0.9395947	0.9358825	0.939586	0.9358827	0.939484	0.935699	0.9394155
	ntial	83	8	8	7	8	62	6	23	24	1
	Distrib										
	ution										
	Rayleig	0.933174	0.9363945	0.9343067	0.9381675	0.9343032	0.938069	0.9343231	0.937823	0.933944	0.9376421
	h	44	7	4	9	7	34	6	53	85	9
	Distrib										
	ution										
	Weibull	0.947845	0.9491853	0.9476983	0.9493763	0.9471694	0.949176	0.9414326	0.949278	0.947756	0.9495672
	Distrib	36	6	5	4	5	34	5	62	934	4
	ution										
0.8	Expone	0.937447	0.9374476	0.9386377	0.9386377	0.9386317	0.938631	0.9385085	0.938508	0.938483	0.9384837
	ntial	60	0	3	3	7	77	0	50	72	2
	Distrib										
	ution										
	Rayleig	0.935952	0.9359527	0.9373129	0.9373129	0.9373044	0.937304	0.9372973	0.937297	0.937258	0.9372580
	h	73	3	7	7	7	47	7	37	05	5
	Distrib										

ution										
Weibull	0.948549	0.9485497	0.9490216	0.9490216	0.9490139	0.949013	0.9490189	0.949018	0.948930	0.9489300
Distrib	74	4	4	4	2	92	2	92	01	1
ution										

Table 13: Effect of fuzzy repair rates of sub-systems on availability of gas turbine system

Fuzzy Availability α		$\begin{split} \widetilde{\tau}_1 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{\tau}_2 &= (0.023, 0.024, 0.025, 0.026) \\ \widetilde{\tau}_3 &= (0.0575, 0.0675, 0.0775, 0.0875) \\ \widetilde{\tau}_4 &= (0.0816, 0.0817, 0.0819, 0.0820) \\ \widetilde{\tau}_5 &= (0.01720, 0.01730, 0.01740, 0.01750) \\ \widetilde{\tau}_6 &= (0.03570, 0.03580, 0.03590, 0.03600) \\ \widetilde{\tau}_7 &= (0.0805, 0.0810, 0.0815, 0.0820) \\ \widetilde{\tau}_8 &= (0.0280, 0.0285, 0.0290, 0.0295) \\ \widetilde{\tau}_9 &= (0.1035, 0.1040, 0.1045, 0.1050) \end{split}$		$\begin{split} \widetilde{\tau}_1 &= (0.1100, 0.1150, 0.1200, 0.1250) \\ \widetilde{\tau}_2 &= (0.023, 0.024, 0.025, 0.026) \\ \widetilde{\tau}_3 &= (0.0575, 0.0675, 0.0775, 0.0875) \\ \widetilde{\tau}_4 &= (0.0816, 0.0817, 0.0819, 0.0820) \\ \widetilde{\tau}_5 &= (0.01720, 0.01730, 0.01740, 0.01750) \\ \widetilde{\tau}_6 &= (0.03570, 0.03580, 0.03590, 0.03600) \\ \widetilde{\tau}_7 &= (0.0805, 0.0810, 0.0815, 0.0820) \\ \widetilde{\tau}_8 &= (0.0280, 0.0285, 0.0290, 0.0295) \\ \widetilde{\tau}_9 &= (0.1035, 0.1040, 0.1045, 0.1050) \end{split}$		$\begin{split} \widetilde{\tau}_1 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{\tau}_2 &= (0.040, 0.045, 0.050, 0.055) \\ \widetilde{\tau}_3 &= (0.0575, 0.0675, 0.0775, 0.0875) \\ \widetilde{\tau}_4 &= (0.0816, 0.0817, 0.0819, 0.0820) \\ \widetilde{\tau}_5 &= (0.01720, 0.01730, 0.01740, 0.01750) \\ \widetilde{\tau}_6 &= (0.03570, 0.03580, 0.03590, 0.03600) \\ \widetilde{\tau}_7 &= (0.0805, 0.0810, 0.0815, 0.0820) \\ \widetilde{\tau}_8 &= (0.0280, 0.0285, 0.0290, 0.0295) \\ \widetilde{\tau}_9 &= (0.1035, 0.1040, 0.1045, 0.1050) \end{split}$		$\begin{split} \widetilde{\tau}_1 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{\tau}_2 &= (0.023, 0.024, 0.025, 0.026) \\ \widetilde{\tau}_3 &= (0.0600, 0.0700, 0.0800, 0.0900) \\ \widetilde{\tau}_4 &= (0.0816, 0.0817, 0.0819, 0.0820) \\ \widetilde{\tau}_5 &= (0.01720, 0.01730, 0.01740, 0.01750) \\ \widetilde{\tau}_6 &= (0.03570, 0.03580, 0.03590, 0.03600) \\ \widetilde{\tau}_7 &= (0.0805, 0.0810, 0.0815, 0.0820) \\ \widetilde{\tau}_8 &= (0.0280, 0.0285, 0.0290, 0.0295) \\ \widetilde{\tau}_9 &= (0.1035, 0.1040, 0.1045, 0.1050) \end{split}$		$\begin{split} \widetilde{\tau}_1 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{\tau}_2 &= (0.023, 0.024, 0.025, 0.026) \\ \widetilde{\tau}_3 &= (0.0575, 0.0675, 0.0775, 0.0875) \\ \widetilde{\tau}_4 &= (0.0840, 0.0850, 0.0860, 0.0870) \\ \widetilde{\tau}_5 &= (0.01720, 0.01730, 0.01740, 0.01750) \\ \widetilde{\tau}_6 &= (0.03570, 0.03580, 0.03590, 0.03600) \\ \widetilde{\tau}_7 &= (0.0805, 0.0810, 0.0815, 0.0820) \\ \widetilde{\tau}_8 &= (0.0280, 0.0285, 0.0290, 0.0295) \\ \widetilde{\tau}_9 &= (0.1035, 0.1040, 0.1045, 0.1050) \end{split}$	
		$\widetilde{A}_{\mathrm{l}}(t,\alpha)$	$\widetilde{A}_2(t,\alpha)$	$\widetilde{A}_{1}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\tilde{A}_{\mathrm{l}}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\tilde{A}_{\mathrm{l}}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$	$\widetilde{A}_{1}(t,\alpha)$	$\tilde{A}_2(t,\alpha)$
0	Expone ntial Distrib ution Rayleig h Distrib ution	0.929673 22 0.926380 06	0.9422947 4 0.9406723 9	0.9299557 1 0.9266648 4	0.9434652 0 0.9418495 8	0.9321136 5 0.9297225 0	0.948563 48 0.947666 84	0.9309917 0 0.9277655 3	0.943067 51 0.941472 63	0.929675 48 0.926382 48	0.9423016 1 0.9406789 3
	Weibull Distrib ution	0.941376 88	0.9524864	0.9415989	0.9534363	0.9423596	0.955263 55	0.9421040 8	0.953030 77	0.941377 88	0.9524893
0.2	Expone ntial	0.931702 91	0.9414433 9	0.9320825 1	0.9425261 8	0.9345950 1	0.947378 76	0.9329227 5	0.941850 59	0.931705 59	0.9414497 8

	Distrib										
	ution										
	Rayleig	0.927961	0.9397217	0.9279265	0.9404762	0.9309267	0.946428	0.9292617	0.940316	0.928456	0.9401362
	h	25	0.5557217	6	9	5	73	5	58	27	7
	Distrib	23	U	O O	9		13	J	30	21	,
	ution										
	Weibull	0.943784	0.9512643	0.9438267	0.9522614	0.9448251	0.954514	0.9442715	0.952516	0.942561	0.9517250
	Distrib	36	9	4	5	3	82	6	73	73	9
0.4	ution	0.000.00	0.040.7004	0.0240=10	0.044.744.7	0.0260702	0.046440	0.0245450	0.0400=0	0.000500	0.010.7111
0.4	Expone	0.933586	0.9405381	0.9340710	0.9415417	0.9369532	0.946113	0.9347178	0.940878	0.933590	0.9405441
	ntial	95	1	6	2	0	29	2	43	05	7
	Distrib										
	ution										
	Rayleig	0.930872	0.9391825	0.9296712	0.9399826	0.9346275	0.945775	0.9328167	0.939962	0.931592	0.9397162
	h	56	1	4	5	6	28	2	35	67	4
	Distrib										
	ution										
	Weibull	0.945271	0.9501362	0.9453871	0.9514876	0.9472451	0.953826	0.9469173	0.951982	0.944925	0.9502715
	Distrib	28	8	9	2	7	71	6	67	17	3
	ution										
0.5	Expone	0.934489	0.9400023	0.9350283	0.9409668	0.9381002	0.945427	0.9391939	0.939798	0.938103	0.9400081
	ntial	28	3	3	5	3	76	3	95	56	7
	Distrib										
	ution										
	Rayleig	0.931581	0.9385183	0.9326752	0.9395621	0.9367263	0.944862	0.9346271	0.939672	0.933281	0.9389271
	h	54	5	6	8	8	74	4	14	65	6
	Distrib										

	ution										
	Weibull	0.946945	0.9495723	0.9479163	0.9502671	0.9489672	0.953176	0.9486193	0.951478	0.946218	0.9496271
	Distrib	09	1	0	5	5	28	6	25	62	5
	ution										
0.6	Expone	0.935964	0.9395992	0.9366003	0.9405221	0.9400029	0.944833	0.9377708	0.939145	0.935967	0.9396049
	ntial	05	3	1	3	0	67	3	30	98	3
	Distrib										
	ution										
	Rayleig	0.934324	0.9382670	0.9349593	0.9391893	0.9388558	0.944130	0.9363514	0.939454	0.934334	0.9382724
	h	65	6	3	8	9	95	1	30	18	9
	Distrib										
	ution										
	Weibull	0.947984	0.9491654	0.9488721	0.9498276	0.9499256	0.952451	0.9497167	0.951178	0.947621	0.9491725
	Distrib	35	8	0	3	1	87	2	236	854	4
	ution										
0.8	Expone	0.938643	0.9386432	0.9394810	0.9394810	0.9435416	0.943541	0.9395552	0.939555	0.938648	0.9386483
	ntial	20	0	8	8	5	65	7	27	30	0
	Distrib										
	ution										
	Rayleig	0.937426	0.9374262	0.9382679	0.9382679	0.9429211	0.942921	0.9389893	0.938989	0.937431	0.9374313
	h	27	7	9	9	1	11	8	38	38	8
	Distrib										
	ution										
	Weibull	0.948930	0.9489300	0.9496016	0.9496016	0.9510345	0.951034	0.9509946	0.950994	0.948932	0.9489322
	Distrib	01	1	1	1	6	56	1	61	21	1
	ution										

Fuzzy Availability α ↓		$\begin{split} \widetilde{\tau}_1 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{\tau}_2 &= (0.023, 0.024, 0.025, 0.026) \\ \widetilde{\tau}_3 &= (0.0575, 0.0675, 0.0775, 0.0875) \\ \widetilde{\tau}_4 &= (0.0816, 0.0817, 0.0819, 0.0820) \\ \widetilde{\tau}_5 &= (0.01760, 0.01770, 0.01780, 0.01790) \\ \widetilde{\tau}_6 &= (0.03570, 0.03580, 0.03590, 0.03600) \\ \widetilde{\tau}_7 &= (0.0805, 0.0810, 0.0815, 0.0820) \\ \widetilde{\tau}_8 &= (0.0280, 0.0285, 0.0290, 0.0295) \\ \widetilde{\tau}_9 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \\ \widetilde{A}_1(t,\alpha) & \widetilde{A}_2(t,\alpha) \end{split}$		$\begin{split} \widetilde{r}_1 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{r}_2 &= (0.023, 0.024, 0.025, 0.026) \\ \widetilde{r}_3 &= (0.0575, 0.0675, 0.0775, 0.0875) \\ \widetilde{r}_4 &= (0.0816, 0.0817, 0.0819, 0.0820) \\ \widetilde{r}_5 &= (0.01720, 0.01730, 0.01740, 0.01750) \\ \widetilde{r}_6 &= (0.03625, 0.03650, 0.03675, 0.03700) \\ \widetilde{r}_7 &= (0.0805, 0.0810, 0.0815, 0.0820) \\ \widetilde{r}_8 &= (0.0280, 0.0285, 0.0290, 0.0295) \\ \widetilde{r}_9 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \\ \widetilde{A}_1(t, \alpha) & \widetilde{A}_2(t, \alpha) \end{split}$		$\begin{split} \widetilde{\tau}_1 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{\tau}_2 &= (0.023, 0.024, 0.025, 0.026) \\ \widetilde{\tau}_3 &= (0.0575, 0.0675, 0.0775, 0.0875) \\ \widetilde{\tau}_4 &= (0.0816, 0.0817, 0.0819, 0.0820) \\ \widetilde{\tau}_5 &= (0.01720, 0.01730, 0.01740, 0.01750) \\ \widetilde{\tau}_6 &= (0.03570, 0.03580, 0.03590, 0.03600) \\ \widetilde{\tau}_7 &= (0.0850, 0.0855, 0.0860, 0.0865) \\ \widetilde{\tau}_8 &= (0.0280, 0.0285, 0.0290, 0.0295) \\ \widetilde{\tau}_9 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{A}_1(t, \alpha) & \widetilde{A}_2(t, \alpha) \end{split}$		$\begin{split} \widetilde{\tau}_1 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{\tau}_2 &= (0.023, 0.024, 0.025, 0.026) \\ \widetilde{\tau}_3 &= (0.0575, 0.0675, 0.0775, 0.0875) \\ \widetilde{\tau}_4 &= (0.0816, 0.0817, 0.0819, 0.0820) \\ \widetilde{\tau}_5 &= (0.01720, 0.01730, 0.01740, 0.01750) \\ \widetilde{\tau}_6 &= (0.03570, 0.03580, 0.03590, 0.03600) \\ \widetilde{\tau}_7 &= (0.0805, 0.0810, 0.0815, 0.0820) \\ \widetilde{\tau}_8 &= (0.0320, 0.0340, 0.0360, 0.0380) \\ \widetilde{\tau}_9 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \\ \widetilde{A}_1(t, \alpha) & \widetilde{A}_2(t, \alpha) \end{split}$		$\begin{split} \widetilde{\tau}_1 &= (0.1035, 0.1040, 0.1045, 0.1050) \\ \widetilde{\tau}_2 &= (0.023, 0.024, 0.025, 0.026) \\ \widetilde{\tau}_3 &= (0.0575, 0.0675, 0.0775, 0.0875) \\ \widetilde{\tau}_4 &= (0.0816, 0.0817, 0.0819, 0.0820) \\ \widetilde{\tau}_5 &= (0.01720, 0.01730, 0.01740, 0.01750) \\ \widetilde{\tau}_6 &= (0.03570, 0.03580, 0.03590, 0.03600) \\ \widetilde{\tau}_7 &= (0.0805, 0.0810, 0.0815, 0.0820) \\ \widetilde{\tau}_8 &= (0.0280, 0.0285, 0.0290, 0.0295) \\ \widetilde{\tau}_9 &= (0.1165, 0.1170, 0.1175, 0.1180) \\ \widetilde{A}_1(t, \alpha) & \widetilde{A}_2(t, \alpha) \end{split}$	
0	Expone ntial Distrib ution Rayleig h Distrib ution Weibull Distrib ution	0.929678 22 0.926386 60 0.941377 85	0.9423051 6 0.9406866 4 0.9524885 1	0.9296736 1 0.9263802 5 0.9413769 3	0.9422961 8 0.9406784 2 0.9524881 7	0.9296775 5 0.9263847 6 0.9413788 2	0.942300 75 0.940678 92 0.952489 16	0.9297185 6 0.9264374 7 0.9413861 3	0.942486 78 0.940907 35 0.952526 45	0.929677 89 0.926382 14 0.941377 66	0.9423040 9 0.9407105 2 0.9525014 1
0.2	Expone ntial Distrib ution Rayleig h	0.931708 36 0.928816 54	0.9414524 3 0.9399825 6	0.9317031 5 0.9288716 2	0.9414446 3 0.9400827 6	0.9317073 5 0.9283671 5	0.941449 26 0.940028 56	0.9317653 6 0.9290273 5	0.941613 40 0.940287 36	0.931710 01 0.928836 52	0.9414520 1 0.9399208 4

	l	T	T	T	T	1	1	1	I	1	Ī
	Distrib										
	ution										
	Weibull	0.942826	0.9516282	0.9438277	0.9518746	0.9430728	0.951728	0.9435247	0.951875	0.943452	0.9516726
	Distrib	71	3	6	3	8	82	1	64	87	3
	ution										
0.4	Expone	0.933593	0.9405484	0.9335873	0.9405393	0.9335916	0.940543	0.9336594	0.940694	0.933590	0.9405461
	ntial	16	5	0	1	2	99	1	63	41	2
	Distrib										
	ution										
	Raleigh	0.930415	0.9392761	0,9299847	0.9392761	0.9302746	0.939627	0.9303872	0.939726	0.929927	0.9392287
	Distrib	62	4	2	6	1	18	6	25	63	4
	ution										
	Weibull	0.944926	0.9507261	0.9452778	0.9502556	0.9457283	0.950372	0.9457265	0.950654	0.944896	0.9504672
	Distrib	15	4	3	3	6	86	4	72	54	5
	ution										
0.5	Expone	0.938106	0.9400130	0.9381006	0.9400043	0.9381050	0.940002	0.9381808	0.940150	0.938104	0.9400102
	ntial	78	1	2	8	0	34	0	60	12	7
	Distrib										
	ution										
	Rayleig	0.932617	0.9387162	0.9327156	0.9389273	0.9329173	0.939028	0.9328735	0.939037	0.931983	0.9387267
	h	82	5	2	6	6	73	6	52	76	4
	Distrib										
	ution										
	Weibull	0.946271	0.9495162	0.9464527	0.9494625	0.9471973	0.949726	0.9468736	0.949956	0.945976	0.9499278
	Distrib	83	8	3	4	3	37	2	42	43	4
	ution										
0.6	Expone	0.935971	0.9396106	0.9359646	0.9396003	0.9359691	0.939604	0.9360597	0.939740	0.935968	0.9396065

Research Article

	ntial	67	7	3	7	2	93	6	29	80	8
		07	'	3	/	2	93		29	00	8
	Distrib										
	ution										
	Rayleig	0.934335	0.9382789	0.9343264	0.9382682	0.9343376	0.938273	0.9344572	0.938445	0.934341	0.9382751
	h	53	7	1	3	5	28	8	36	90	1
	Distrib										
	ution										
	Weibull	0.947826	0.9491736	0.9478374	0.9491873	0.9483729	0.949267	0.9479826	0.949074	0.947453	0.9492874
	Distrib	71	2	6	6	94	45	5	53	45	6
	ution										
0.8	Expone	0.938651	0.9386514	0.9386440	0.9386440	0.9386488	0.938648	0.9387704	0.938770	0.938649	0.9386498
	ntial	45	5	7	7	0	80	0	40	85	2
	Distrib										
	ution										
	Rayleig	0.937436	0.9374367	0.9374273	0.9374273	0.9374324	0.937432	0.9375766	0.937576	0.937433	0.9374336
	h	76	6	0	0	0	40	6	66	61	1
	Distrib										
	ution										
	Weibull	0.948931	0.9489316	0.9489309	0.9489309	0.9489324	0.948932	0.9489568	0.948956	0.948939	0.9489393
	Distrib	64	4	1	1	9	49	3	83	38	8
	ution										

Conclusion

The main objective of this study is to develop a framework for analyzing and predicting the behavior of the gas turbine system by using general distributions. The results for fuzzy availability with different time and different left and right height for Weibull, exponential and Rayleigh distributions are shown in tables 4, 5, 6, 7 and 8. Tables 9, 10 and 11 show the behavior of fuzzy profit of the gas turbine system with different time and different left and right height for Weibull, exponential and Rayleigh distribution. Numerical results obtained for availability and profit of gas turbine system are shown graphically in figures 5, 6, 7 and figures 8, 9 and 10 respectively and it is observed that when the time increases the fuzzy availability and fuzzy profit decreases .From Table 12 and 13 depict the behavior of availability of gas turbine system with respect to fuzzy failure and fuzzy repair rates which are taken as Weibull, exponential and Rayleigh distributed. It is observed that availability of the gas turbine system go on decreasing with the increase of fuzzy failure rates of the sub-systems A, B, C, D, E and F. However, the effect of fuzzy failure rates of the sub-systems B and C is much more as compare to the fuzzy failure rates of the sub-systems A, D, E and F. Table 13, indicate that availability of the gas turbine system increases with the increase of repair rates. The effect of fuzzy repair rates of subsystems B and C is much high as compare to the other sub-systems. On the basis of result obtained, it also concluded that traditional fuzzy number gives the same degree of acceptance for all values of availability lying in a particular interval, whereas on the same time, the use of proposed approach provides large range of degree of acceptance for different values of availability and profit lying in a particular interval. Therefore in many industrial problems availability and profit of repairable systems can be analyzed in more elastic and effective manner by using proposed method. In case of gas turbine system, there is need to control the failure rates and repair rates of sub-systems B and C in order to make the gas turbine system more reliable.

Acknowledgements

The authors are thankful to the reviewers for their valuable suggestions/comments that led to an improved presentation of this paper.

Conflict of Interest/ Competing Interest: Authors has no conflict of interest statement.

References

- 1. Aliev, I.M., Zohre, K.(2013): Fuzzy system reliability analysis using time dependent fuzzy set. Control Cybern. 33(4), 653-662.
- 2. Buckley, J. J., Feuring, T.(2001): Fuzzy initial value problem for Nth -order fuzzy linear differential equations. Fuzzy Set Syst. 121, 247-255.
- 3. Cai, K.Y., Wen, C.Y., Zhang, M L.(1991a): Fuzzy reliability modeling of gracefully degradable computing systems. Reliab. Eng. Syst. Safe. 33(1),141-157.

- 4. Cai, K. Y., Wen, C Y., Zhang, M. L.(1991b): Posbist reliability behavior of typical systems with two types of failure. Fuzzy Set Syst. 43(1), 17-32.
- 5. Cheng, C.H., Mon, D.L.(1993): Fuzzy system reliability analysis by interval of confidence. Fuzzy Set Syst. 56, 29 35.
- 6. Chen, S.M.(1994): Fuzzy system reliability analysis using fuzzy number arithmetic operations. Fuzzy Set Syst. 64(1), 31-38.
- 7. Chen, S. M., Munif, A., Chen, G. S., Liu, H. C., Kuo, B. C.(2012): Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left and right heights. Expert Syst. Appl. 39(7), 6320-6334.
- 8. Goel, M & Narain, S (2018): Fuzzy Availability Analysis of Polytube Industry with General Distribution. International Journal of Interdisciplinary Research and Innovations. 6(2), 412-422.
- 9. Gupta, P.(2004): Numerical analysis of reliability and availability of the serial processes in butter-oil processing plant. Int. J. Qual. Reliab. Manag. 22(3), 303-316.
- 10. Gupta, S., Tiwari, P. C.(2009): Simulation modeling and analysis of complex system of thermal power plant. J. Ind. Eng. Manag. 2(2), 387-406.
- 11. Iqbal, P., Uduman, P. S. S.(2016): Reliability analysis of paper plant using Boolean function with fuzzy logic technique. Int. J. Appl. Eng. Res. 11(1), 573-577.
- 11. Kumar, D., Singh, I. P., Singh, J.(1989): Reliability analysis of the feeding system in the paper industry. Microelectron Reliab. 28(2), 213-215.
- 12. Kumar, D., Singh, J., Pandey, P. C.(1989): Availability of a washing system in the paper industry. Microelectron Reliab. 29(5),775-778.
- 13. Kumar, D., Pandey, P. C., Singh, J.(1990): Design and cost analysis of a refining system in a Sugar industry. Microelectron Reliab. 30(6),1025-1028.
- 14. Kumar, D., Pandey, P. C.(1993): Maintenance planning and resource allocation in urea fertilizer plant. Qual. Reliab. Eng. Int.9(5), 411-423.
- 15. Kumar, S., Mehta, N. P., Kumar, D.(1997): Steady state behavior and maintenance planning of a desulphurization system in a urea fertilizer plant Microelectron Reliab. 37(6), 949-953.
- 16. Kumar, A., Lata, S.(2012): Reliability evaluation of condensate system using fuzzy markov model. Ann. Fuzzy Math. Inform. 4(2), 281-291.
- 17. Singer, D.(1990): A fuzzy set approach to fault tree and reliability analysis. Fuzzy Set Syst. 34(2), 145-155.
- 18. Lata,S., Kumar, A.(2011): Mehar's method for analyzing the fuzzy reliability of piston manufacturing system. Eksploatacja Niezawodnosc Maint. Reliab. 51, 26-39.
- 19. Suleiman, K., Ali, U. A.: Yusuf I.(2013): Stochastic analysis and performance evaluation of a complexthermal power plant. Innov. Syst. Design Eng. 4 (15), 21-32.
- 20. Verma, A. K., Srividya, A., Ravi Kumar, H. M.(2002): A framework using uncertainties in the composite power system reliability evaluation. Electr. Pow. Compo. Sys. 30(7), 679-691.

- 21. Verma, M., Kumar, A., Singh, Y.(2012): Power system reliability evaluation using fault tree approach based on generalized fuzzy number. J. Fuzzy Set Val. Anal. 2012(1),1-13.
- 22. Verma, M., Kumar, A.(2014): A novel general approach to evaluating the reliability of gas turbine system. Eng. Appl. Artif. Intel. 28, 13-21.
- 23. Zadeh, L A.(1965): Fuzzy sets. Inform. Control. 8(3), 338-353.