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_____________________________________________________________________________________________________ 
 
Abstract: We suppose that Ω is a bounded domain in R

N (N ≥ 3) with smooth boundary ∂Ω. Consider the quasi-
linear elliptic equation of p-Kirchhoff type with convection term singular weights, 
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in Ω. We proved the existence of solutions to a class of elliptic problems, by using Galerkins approach with a 
priori estimates. 
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1. Introduction  

The main objective of this work is to present some results about the existence of nonnegative solutions to 
the following problem 
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where Ω is a bounded domain with smooth boundary in RN and the operator ∆pu = div(|∇ u|p−2∇ u) with 1 < p 

<= ∞  
and the functional M verifies 

(H1)M : (0,+∞) −→ (0,+∞) continuous and m0=infs>0M(s) >0. 

We suppose that h is sublinear function and g is bounded by a gradient term. For these functions, we set 
these hypotheses: 

 

(H2) :h R R  is locally Holder continuous, there exist positive constants 
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(H3) : N
g R R  is locally Holder continuous, there exist positive constants '
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In recent years, more and more attention has been paid to the existence of solutions for semilinear degenerate 
elliptic problems. For the Results relating to these problems considered over a bounded smooth domain Ω instead 
of RN , the corresponding problem was studied, for instance, in [1, 2] and the references cited therein. For 
degenerate partial differential equations, i.e., equations with various types of singularities in the coefficients, it is 
natural to look for solutions in weighted Sobolev spaces [1] and references therein. 

Problems such as (1.1) are knowing in the literature is called the Kirchhoff equation. Equations of the problems 
(1.1) appears in a variety of applications, such as the modelling of electrorheological fluids, elasticity problems, 
image processing, mathematical description of the processes filtration of an ideal barotropic gas through a porous 
medium, etc.; see [8, 9, 12] for more details. Because of the term 
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a problem like (1.1) is nonlocal. 

The Kirchhoff type equations arise in the description of nonlinear vibrations of an elastic string, see Kirchhoff 
[3]. In recent years, much interest has grown on p-Kirchhoff type problems of the kind of semilinear degenerate 
elliptic kirchhoff type problems of the form (1.1) with nonlinearity on the right-hand side which also depends on 
the gradient of the solution have been extensively studied by many authors, using various methods. The gradient 
terms make the study of solvability more complicated because of some difficulties arising in the use of methods of 
calculus of variations. 

Let us first note that several authors have started by studing extensively the semi-linear case (p = 2); Among 
these works we quote for example [8, 10, 11, 12, 13]. Later, research intersted in these problem for the case p >2, 
we refer the reader to [9, 14, 15, 16]. In [16], A.Ourraoui considered the following problem 
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the author proved the existence of the positive solution of the problem (1.2) by used Galerkins approach with a 
priori estimates. 

     The main result is stated below 

Theorem 1.1.Suppose (H1) − (H3). Then, the problem (1.1) admits at least one nontrivial weak solution. 

 

2.Preliminaries 

Let p >1 and for α ∈  R we let 

 

to be the weighted Lebesgue space with the norm 

 

and 
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to be the weighted Sobolev space with the norm 

 
 

We also define 1, 1,
0

1 1
, ,p p

W W
d d
 

        
   

 to be a closure of the set  0C
   
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Lemma 2.1. [Continuous embedding] 
Let α ≥ 0, 0 ≤ β ≤ α + p. Then 

 

Proof. Follows from Kufner [[4], Sec. 8.8 on p. 57]. 

Lemma 2.2. [Continuous embedding] 

Let α ≥ 0, 1 < p < n. Then 

 

 

Proof. The first embedding in 2.1 holds due to α ≥ 0 and Ω bounded. 

The second one is a well-known fact (see, e.g., Pick et al. [5]). 

Lemma 2.3. [Compact embedding] 

Let 0 ≤ γ < α + p. Then 

 

Proof. Follows from P. Drbek, J. Hernndez [[1], Sec. 2 on Proposition 2.3]. 
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 and and introduce an equivalent norm 

 

Then  1, ;
, .

p
X


is a uniformly convex (and hence reflexive) Banach space. 

Lemma 2.4. [See [7]] Let F: Rn −→ Rn 
be a continuous function with (F(x),x) ≥ 0, for all x verifying 

|x| = R >0, where (,)is the usual inner product of Rn. Then there exists γ ∈  BR(0) such that F(γ) = 0. 

 

3.Proof of the main result 

We recall that u ∈  X is a weak solution to the problem (1.1) if it verifies 

  21 1 1
( , ) ( , ) 0

( )

p p

X
M u u u vdx h x u vdx g x u vdx v X

d d d x
  



  

            

Proof of Theorem 1.1. 

Let κ = {e1,e2,...,en,...} ⊂ X such that 

 
X = span{e1,e2,...,en} 

 

Define ϑn = {e1,e2,...,en}. It is known that ϑn and Rn are isomorphic and forξ ∈  Rn, we have an unique v ∈  ϑn  
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by the identification: 

 
Define the function F = (F1,F2,...,Fn) : R

n −→ R by 
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We show the existence of weak solutions un ∈  ϑn for the problem 
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For un ∈  ϑn, we have that 

 

 

. 

According to condition (H2) and (H3) we have 
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In view of condition (H3), we have 
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From Lemma 1 in [6], we have 
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M is continuous, this implies that 

 

So we obtain that u is a weak solution to the problem (1.1), and from (H1), we obtain 0u  . 
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