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ABSTRACT 

In this paper, we describe an algorithm for modeling and solving integer linear goal programming problems with fuzzy 

parameters.  The proposed algorithm helps the decision maker and the analyst in determination the aspiration levels of 

the goals by a method based on the feasible domain, the differential weights of the sub-goals and the decision maker’s 

preferences. The solution, which is obtained by the present algorithm, is most preferred by the decision maker. An 

illustrative example is presented.   
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1. Introduction 

Many decision making problems that arise in the real world need to be formulated as integer multi – criteria 

mathematical programming problems. In most practical problems, there are various factors should be reflected in 

the formulation of the objective functions and the constraints. Criteria of some problems involve many 

parameters whose possible values may be assigned by the decision maker (DM) or the experts, [4, 6, 7].  

 

 Goal programming (GP) is one of several approaches that have been proposed for soling multi – objective 

mathematical programming (MOMP) problems. It is a powerful technique for modeling, solving and analysis 

multi- criteria decision making (MCDM) problems. In general, a GP model consists of system constraints and 

goal constraints which are marked according to priority structure. It finds a solution to a (MCDM) problem by 

performance the following: 

 

(i) Determination the aspiration levels of the objectives.  

(ii) Calculation the degree of attainment for the goals.  

(iii) Obtaining the optimal solution under the priority structure.  

GP has been applied to a wide range of decision making problems but has not widely accepted by the DM because 

determination the aspiration levels of the goals is difficult and needs numerous calculations and information about the 

problem. 

 

 Several approaches are proposed for solving GP problems, [1, 2, 3, 5, and 8]. These methods deal with several 

types of GP problems but do not discuss determination the aspiration levels of the goals. In [7], an interactive 

algorithm is described for solving multi – objective nonlinear programming problems with fuzzy parameters. The 

concept of  - Pareto optimality is introduced in which the ordinary Pareto optimality is extended based on the  -

level set of fuzzy numbers.  

 

The aim of this research is to present an algorithm for solving integer linear goal programming problems with fuzzy 

parameters. The proposed algorithm helps the DM and the analyst in determination the aspiration levels of the goals by 

a method based on the information of the problem and the simplex method. 

 

2. Problem Formulation and Algorithm 
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Consider the mathematical formulation of an integer linear goal programming problem with fuzzy parameters 

is:  
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Where, x  n
R  

Is the vector of the decision variables, A is an mxn matrix, b is an mxl matrix, each goal  

iii zaxf )( consists of ir linear sub-goals with differential weights iiriil ZWW ,,........,  

Is a vector of ir fuzzy parameters iriil ZZ ..,,......... with real coefficients?  

 

iriiI PP ,,.........  And the functions ,,.......,2,1),( kixf i   are bounded from above on the feasible domain of 

the decision variables. 

Assume that the aspiration levels ia  of the goals are unknown and the DM wishs to maximize the attainment 

degrees of the goals  kQjxf j ...,,.........2,1),(  under the same priority structure. Then, we determine these 

aspiration levels with respect to the function )(xf j which has a higher priority in Q by solving the following linear 

programming problems:  
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Let Y be the set of all optimal solutions of this problem.  
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Let ib  be the optimal value of the problem putThenkiPi .,......,2,1,   
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Assume that th fuzzy parameters in our problem are real fuzzy numbers, [7], such that each real fuzzy number Z 

is a convex continuous fuzzy subset of the real line R whose membership function )(zg z
 is defined by:  

(1) A continuous mapping from R to the closed interval [0,1].  

(2) 0)( zg z
for all Z ),( 1z  

(3) Strictly increasing on  21, zz  

(4)  32 ,1)( zzzallforzg z   

(5) Strictly decreasing on  43 , zz  

(6)   ,0)( 4zzallforzgz
 

 

According to information and data of the DM about the fuzzy parameters of his problem, it is easy to derive 

membership functions for these fuzzy parameters which satisfy the above properties. 

 

 

Definition: The  -level set of the fuzzy numbers  

,,,.........2,1,,,.........2,1, iij rjkiZ  is defined as the ordinary set: 
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Remark:   
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For certain ,10,   the fuzzy integer linear goal programming (FIGP) problem can be understood as the 

following non fuzzy mixed integer goal programming problem          ( :)MIGP  
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Where, each goal  iii azxh ),(  consists of iI  sub-goals of the form: 

iijijij azpxf )(  

 

With the same differential weights  .,.......,2,1,,......., kiww iriil   

 

irj ,.......,1  

The proposed algorithm can be described in step form as follows: 

 

Step 1: Determine the aspiration levels of the goals according to the DM’s preferences.  

 

Step 2: Derive the membership functions of the fuzzy parameters.  

 

Step3: Elicit   from the DM 

 

Step4: Find the  - level set and constitute the  - MIGP problem.  

 

Step5: Solve the  - MIGP problem 

 

Step6: Form the optimal solution of the FIGP problem.  

 

Step7: Stop 

 

 

3. Illustrative Example 

 

Let us have the following problem: 
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           Goal 2: 
2221

~zaxx   
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Where the sub-goals of the first goal have differential weights 2 and 1 respectively. 

 

 Assume that the membership functions of the fuzzy parameters  
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If ,
2

1
 then the 

2
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level set is:  
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(i) The aspiration levels with respect to the first goal are 1,335 21211  aaa  

 

And the optimal solution of the 
2

1
 

MIGP problem is:  
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(ii) The aspiration levels with respect to the second goal are 4,320 21211  aaa  

 

And the optimal solution of the 
2

1

 
 

MIGP problem is:  
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4. Conclusion and limitations 

 

In the proposed algorithm, there is interaction between the analyst and the DM for determination the aspiration 

levels of the goals by a simple method based on the feasible domain of the decision variables, the differential weight 

of the sub-goals and the DM’s preferences. This method determines the aspiration levels of the goals for some GP 

problems in which some of the sub-goals are not bounded on the feasible domain of the decision variables. The 

present algorithm solves mixed integer and pure integer linear goal programming problems with fuzzy parameters in 

the aspiration levels of the goals. The branch and bound method of integer programming, [5.9], is the appropriate 

technique because the  MIGP problem is always mixed integer. 
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