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Abstract: Rough set theory (RST) is an important tool to find feature subset selection. One of the most important and challenging 

issues in RST is to find reducts and core. Most of the problems in many areas, including machine learning, involve high 

dimensional descriptions of input features. Therefore, it is not surprising to mention that several studies have been conducted on 
the dimensionality reduction. Feature selection refers to the problem of selecting those input features that are mostly predictive 
of a given result. RST can be used as a tool to discover data dependency and reduce the number of attributes contained in a data 
set via the data alone that require no extra information. There have been several studies in the area of finding reducts with minimal 
cardinal. In this paper, we have proposed the hybrid information system, in which their attributes consist of crisp and fuzzy 

variables. Fuzzy variables appear as linguistic variables. We first define the degree of separation between fuzzy numbers and 
then choose a threshold-level (γ) to clarify the objects based on attributes. Considering the threshold-level, we use discernibility 
matrices to find reducts and core. Experimental results show that the proposed algorithm can improve the feature selection.  

Keywords: Rough Set Theory; Threshold-level; Feature Selection; Fuzzy numbers; Linguistic Variables 

 

1. Introduction  

Rough set theory is one of the most important tools in data analysis which can find hidden patterns in data. An 

important issue in data analysis is to discover the dependency between the attributes. For many application 

problems, it is often necessary to maintain a concise form of the information system. One way to implement this is 

to search for a minimal representation of the original data set[8]. For this purpose, the concept of a reduct is 

introduced and defined as a minimal subset of initial attribute. In other words, no attributes can be removed from 

the subset without affecting the dependency degree. A feature is mentioned to be relevant if it is predictive of 

decision feature(s), otherwise it is irrelevant. The main objective of feature selection (FS) is to determine a minimal 

feature subset from a problem domain while properly retaining the high accuracy in the representation of original 

features[6]. A detailed review of feature selection techniques devised for classification task can be found in 

(DashLiu, 1997). There are two main approaches to find reducts: one that considers the degree of dependency and 

on that concerns with the discernibility matrix. Heuristic methods such as [1, 3, 20, 10, 7], despite being useful and 

relatively quick in locating reducts, are not able to guarantee such minimal reductions. RST can be used as a tool to 

discover a minimal subset of initial attribute. It has become an extremely interesting topic to researchers and applied 

in many domains[14, 16]. It is an extension of the conventional set theory supporting approximations in decision-

making, leading to application of stochastic-based approaches to this domain, such as Genetic Algorithms and 

extensions [4, 19], and Ant Colony Optimization[2]. By reformulating the rough set reduction task in a propositional 

satisfiability (SAT) framework [5], the solution techniques derived from SAT may be applied that should be able to 

discover such subsets and guarantee their minimality. Search algorithms based on the well-known Davis-Longman-

Loveland algorithm (DPLL) have emerged as the representatives of the most efficient methods to complete SAT 

solvers[8]. Many applications of rough sets use 

1 

the discernibility matrices to find rules or reducts. By finding the set of all prime applicants of the discernibility 

function, all the minimal reducts of a system can be determined. Some of the researchers use clustering-based under 

sampling method [11]. The present article is structured as follows. First, the key concepts underpinning RST are 

reviewed, and the minimal reduct problem is formulated in the context of current solution methods. Next, the 

extension of rough set attribute reduction algorithm is proposed to optimally find discrete reducts. After that, the 

resulting method is extended to the continuous case by discernibility matrix. Finally the computational results are 

presented for the method on appropriate benchmark data [8]. Recently some authors have extended a rough set to 

fuzzy-rough and explained it [15]. In this paper, we proposed the hybrid information system, in which their attributes 

consist of crisp and fuzzy variables. Crisp variables appear as real numbers, and fuzzy variables appear as linguistic 

variables. Using syntactic and semantic rules, linguistic variables are generating and associating. We first defined 

the degree of separation between fuzzy numbers and then chose a threshold level. After that, we defined a binary 

corresponding to each attribute. Objects were classified based on these binary values. In this case, we use 



Turkish Journal of Computer and Mathematics Education  Vol.12 No.14 (2021), 1889-1897 

1890 
 

  
  

Research Article   

discernibility matrices to find reducts and core. In general form, this paper provides an efficient method, algorithm 

to find the minimal sets of data with the same knowledge as the original data. Section 2 represents the notation and 

basic definition in the rough set theory. Section 3 introduces the reducts and core in the information system. Section 

4 represents a concept of degree of seperation between equivalence classes. The rest of this paper focuses on a novel 

method with an example and represents an easy algorithm. 

Notations and basic definitions 

In this section, we recall some basic definitions of fuzzy set and rough set theory. 

2.1. fuzzy theory. 

Definition 1. [9] A fuzzy number is a fuzzy set u : R → I = [0,1] which satisfies (i) u is upper semiconscious. 

(ii) u(x) = 0, outside some interval [c,d]. iii) There are real numbers a,b : c ≤ a ≤ b ≤ d for which 

1. u(x) is monotonic increasing on [c,a]. 

2. u(x) is monotonic decreasing on [b,d]. 

3. u(x) = 1,a ≤ x ≤ b 

The set of all such fuzzy numbers is represented by E1. 

Definition 2. (Triangular fuzzy number) A fuzzy set A is called triangular fuzzy number with centera, left width 

α > 0 and right width β > 0 , if its membership function has the 

following form: 

(2.1) 

It often is denoted in brief as 

Definition 3. (Trapezoidal fuzzy number) A fuzzy set A is called trapezoidal fuzzy number with tolerance 

interval [a,b], left width α and right width β, if its membership function has the following form: 

  (2.2) 

Since the trapezoidal fuzzy numbers are completely characterized by four real numbers a,b,α,β, it is often 

denoted in brief as u = (a,b,α,β). If a = b trapezoidal fuzzy number convert to triangular fuzzy number and is denoted 

by u = (a,a,α,β). 

Definition 4. Following [13], we represent an arbitrary fuzzy number by an ordered pair of functions (u(r),u(r)); 

0 ≤ r ≤ 1, which satisfy the following requirements, 

1): u(r) is a bounded left-continuous non- decreasing over [0,1]. 

2): u(r) is a bounded left-continuous non- increasing over [0,1]. 3): u(r) ≤ u(r), 0 ≤ r ≤ 1. 

Definition 5. The (crisp) set of elements that belong to the fuzzy number u which comprises all elements of < 

whose grade of membership in u is grater than or equal to r is called the r-level set and denoted by [u]r where [u]r = 

[u(r),u(r)]. 

Let u = (a,α,β) be a triangular fuzzy number then in parametric representation we have u = (a − (1 − r)α,a + (1 

− r)α) and [u]r = [(a − (1 − r)α,a + (1 − r)α)], if u = (a,b,α,β) be a trapezoidal fuzzy number then in parametric 

representation we have u = (a−(1−r)α,b+(1−r)β) and [u]r = [a − (1 − r)α,b + (1 − r)β]. 

Definition 6. (support) Let u be a fuzzy number, the support of u, denoted supp(u), is the crisp subset of < and 

is defined as below: 

 supp(u) = {x ∈ <|u(x) > 0}. (2.3) 

If u is a triangular(trapezoidal) fuzzy number then supp(u) = (a − α,a + β)(a − α,b + β)). 

Definition 7. Let u and v are fuzzy numbers. We say that u j v if u(x) ≤ v(x) for all x ∈ <. 

Definition 8. Let u = (u(r),u(r)) and v = (v(r),v(r)) are two arbitrary fuzzy numbers, define δ(u,v) as below: 
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Supp(u) ∩ Supp(v) 6= ∅, 

O.w, 

that is called the degrees of separation between two fuzzy 

numbers. Due to definition7 if u, v are two arbitrary fuzzy number such that u ⊆ v then δ(u,v) = 0. Similarly if u0 

and v0 are two arbitrary variables with crisp values(real, nominal, binary,...) then we define δ(u0,v0) as 

u0 6= v0, 

O.w. 

2.2. Linguistic Variable. One can use the fuzzy sets to represent linguistic variables. A linguistic variable can 

be considered as a variable whose value is a fuzzy set. 

Definition 9. A linguistic variable is characterized by a quintuple (x,T(x),U,G,M), in which x is the name of the 

variable, T(x) is the term set of x, with each value being a fuzzy number defined on U, G is a syntactic rule for 

generating the names of values of x and M is a semantic rule for associating with each value its meaning 

For example if x = Age and U = [7,65] then the term sets of linguistic variable Age i.e., T(Age) may be as T(Age) 

= {baby,young,middle−age,old}, then we define the meaning of a fuzzy value such as young by a membership 

function in the form of trapezoidal or triangular fuzzy numbers as follow: baby = (7,14,0,4), young = (18,25,4,5), 

middle − aged = (30,40,5,5) and old = (45,60,5,0). Fig.1, represents the compatibility of baby, young, middle aged 

and old respectively. As we see in 

 

Figure 1. The components of Linguistic variable Age from left to right ”baby, young, middle-aged, old” 

Fig.1 for all r > 0.5, [baby]r ∩[young]r = ∅, [young]r ∩[middle−aged]r = ∅ and [middle−aged]r ∩ [old]r = ∅. If A 

be a domain of a linguistic variable we can apply some words such as very(A), more or less(A), very very(A), etc. 

The membership function of theme, can be defined respectively 

as (A(x))2, pA(x), (A(x))4, etc. See Fig.2. Due to definition 8 we have δ(baby,middle − aged) = δ(middle − 

aged,old) = 0.5, δ(baby,more or less baby) = 0.6180, δ(middle − aged,very old) = 0.3819 and δ(middle−aged,very 

very old) = 0.2755, δ(old,very old) = δ((old,very very old)) = 0, etc. 

 

Figure 2. The components of Linguistic variable Age from left to right ”baby, more or less baby, young, very 

young, middle-aged, old, very old, very very old” 

2.3. partial order set. Let U be any set and Λ be some collections of its subsets, we say that the relationship Rb 

on Λ is a binary relation if for all X, Y ∈ Λ that state (X,Y ) ∈ Rb is true or false. 

Definition 10. A binary relation Rb on a set Λ is called 

1- Reflexive, if and only if, for all X ∈ Λ, (X,X) ∈ Rb, 
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2- Antisymmetric, if and only, if for all elements X and Y of Λ, whenever (X,Y ) ∈ Rb and 

(Y,X) ∈ Rb then X = Y , 

3- Transitive, if (X,Y ) ∈ Λ and (Y,Z) ∈ Λ then (X,Z) ∈ Λ. 

Definition 11. A binary relation Rb on Λ is a partial order on Λ if and only if Rb is reflexive, antisymmetric and 

transitive. The set Λ together with a partial order Rb is called partially order set and denoted it by (Λ,Rb). 

2.4. Rough set theory. An approximation space is a pair (U,R), where U is a nonempty finite set, that is called 

universe set and R is an equivalence relation defined on U. For each x ∈ U define [x]R, the equivalence class of x, as 

follows: 

[x]R = {y ∈ U|(x,y) ∈ R} 

Definition 12. [12] Let S = (U,R) be an approximation space and X be a subset of U, the lower approximation 

of X by R in S is defined as RX = {x ∈ U|[x]R ⊆ X} and the upper approximation 

 

of X by R in S is defined as RX = {x ∈ U|[x]R ∩ X =6 ∅}. 

A pair S = (U,A) where A = Al ∪ Ac in which Al is a nonempty finite set of attributes that appear as fuzzy 

numbers(linguistic variable) and Ac is a finite set of attributes that appear as crisp value(real, nominal, ordinal,...). 

Making an equivalence relation is called hybrid information system. For every a ∈ A we have a : U → Va where Va 

is called domain of attribute a, if X ⊆ U then a(X) = {a(x)|x ∈ X}. Through this paper we may assign fuzzy value to 

some attributes. Note that a special case of hybrid information system appears as S = (U,C ∪ D) where C = Cl ∪ Cc 

is the hybrid condition attributes and D is the decision attributes called hybrid decision table. Equivalence relations 

is a way to break up a set U into a union of disjoint subsets. Let A be an equivalence relation on U and S = (U,A) 

be an hybrid information system, with any B ⊆ A, in which B = Bl ∪ Bc there is an associated equivalence relation 

 IND(B) = {(x,y) ∈ U × U|∀b ∈ Bl ∪ Bc,δ(b(x),b(y)) = 0} (2.4) 

is an equivalence relation on U called indiscernibility relation. One can see that U/IND(B) = [x]IND(B) is partition 

of U generated by IND(B). Here for simplicity denote U/IND(B) and [x]IND(B) respectively by U/B and [x]B. 

 

A subset X of U is mentioned to be R-definable in S if and only if RX = RX. The boundary set 

 

is R(X) − R(X) and denote it by BNR(X). It consist of those objects that we cannot certainly classify in to X in R. 

A subset X of U is called rough set if BNRX 6= ∅, otherwise the set X is called crisp with respect to R. 

Definition 13. (Accuracy of Approximation:) Let S = (U,A) be a hybrid information system where A = Al∪Ac 

and X be a subset of universe set U and B ⊆ A then accuracy of approximation X by B is defined as follow: 

 , (2.5) 

where |.| denotes the cardinality of a set. 

If αB(X) = 1, then X is crisp with respect to attributes in B, if αB(X) < 1 then X is rough with respect to attributes 

in B. 

Definition 14. Let C and D be a subset of A. It is mentioned that D depends on C in a degree k(0 ≤ k ≤ 1), denoted 

by C →k D, if 

, 

where POSC(D) = SX∈U/D C(X), is called C-positive region of D. Note that k = 1 means that D depends, totally, on 

C and k < 1, means that D depends partially(in a degree k) on C. 

Example 1. Consider below hybrid decision table in which C = {a,b,c} is a set of hybrid condition attributes 

where Cl = {a,b} are linguistic variables and Cc = {c} is crisp attribute. Domain of theme are Va = 

{a1,a2,a3,very(a1),more or less(a3),very(a3)} in which a1 = (0,1,0,1), a2 = (2,1,1), a3 = (3,4,1,0) are triangular or 

trapezoidal fuzzy numbers. 
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Vb = {b1,b2,b3,more or less(b1),very(b1),very(b3)} in which b1 = (2,3,0,1), b2 = (4,5,1,1), 

Table 1 

Segment a b c e = class frequency 

U1 a1 b3 c2 yes 30 

U2 v(a1) b2 c3 no 50 

U3 ml(a1) b1 c1 yes 70 

U4 a1 v(b1) c1 no 80 

U5 a2 v2(b1) c2 yes 50 

U6 a3 b1 c3 no 50 

U7 a2 b2 c2 yes 50 

U8 ml(a2) v2(b1) c2 yes 35 

U9 v2(a1) v2(b3) c2 yes 35 

U10 v2(a3) b1 c3 no 20 

b3 = (6,8,1,0) are trapezoidal fuzzy numbers, also Vc = {c1,c2,c3} in which Vc is crisp set, are condition attributes 

on  where Ui is ith segment of U. For simplicity in decision table we replace very(ai), very very(ai) and 

more or less(ai) respectively by v(ai), v2(ai) and ml(ai), etc. 

Due to 2.4 

U/C = {W1,W2,W3,W4,W5,W6}, 

in which W1 = {U1,U9}, W2 = {U2}, W3 = {U3,U4}, W4 = {U5,U8}, W5 = {U6,U10}, W6 = {U7}. Note that for all x,y 

∈ Wi we have δ(a(x),a(y)) = δ(b(x),b(y)) = δ(c(x),c(y)) = 0. We observe that D = {e} is decision attribute that it’s 

domain is VD = {yes,no}, then U/D = {D1,D2} where D1 = {U1,U3,U5,U7,U8,U9} and D2 = {U2,U4,U6,U10} then C(D1) 

= W1 ∪ W4 ∪ W6 = {U1,U5,U7,U8,U9} and C(D2) = W2 ∪ W5 = {U2,U6,U10}. According to definition, POSC(D) = 

C(D1) ∪ C(D2), then  

Reducts and Core 

Let S = (U,A = C ∪D) where C = Cl ∪Cc be a hybrid decision table and cˆ∈ C then attribute cˆ is called 

dispensable in S if POSC(D) = POSC−{cˆ}(D), else cˆ is called indispensable, in addition S = (U,A = C ∪ D) is 

independent if all cˆ∈ C are indispensable. 

Definition 15. Suppose S = (U,A = C∪D) where C = Cl∪Cc be a hybrid decision table. A subset R of C is called 

reduct of C if S = (U,A = R ∪ D) is independent and POSC(D) = POSR(D). 

Notice that a hybrid decision table may have many attribute reducts. The set of all reducts of C is denoted by 

RED(C), in other word, 

 RED(C) = {R ⊆ C|γ(R,D) = γ(C,D),∀B ⊂ R,γ(C,D) 6= γ(C,B)}. (3.1) 

The intersection of all reducts of C is called the core of C, i.e. Core(C) = TRed(C). 

δ-Matrix Let S = (U,A = C ∪ D) where C = Cl ∪ Cc be a hybrid decision table and Cl = 

{a1,a2,...,apl} be a set of fuzzy condition attributes(Linguistic variables), Cc = {apl+1,apl+2,...,ap} is a set of crisp 

condition attributes and U/C = {W1,W2,...,Wk}. The δ-matrix of U = {U1,U2,...,Un} is a symmetric n × n matrix, Mδ, 

that their entries are given as: 

(Mδ)i,j = (δ(a1(x),a1(y)),δ(a2(x),a2(y)),...,δ(ap(x),ap(y))). 

where ai ∈ Cl ∪ Cc for i = 1,2,...,p. For convenience, we take δi,j
a = {δ(a(x),a(y))|(x,y) ∈ 

Ui × Uj} that are entries of δ-matrix, in other word 

. 



Turkish Journal of Computer and Mathematics Education  Vol.12 No.14 (2021), 1889-1897 

1894 
 

  
  

Research Article   

notation   in this matrix is used to show that Ui and Uj are in the same class. If the corresponding decisions of 

segment Ui and segment Uj are the same, then we do not assign δi,j in δ- Matrix, although, some attributes in objects 

Ui and Uj differ. In other word, if there exists a Ds ∈ U/D such that Ui and Uj belong to Ds, the corresponding element 

in this matrix is removed. Due to example 1, δ-Matrix can be obtain as below: 

Table 2 

 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

U1 − 0,0.5,1 0,1,1 0,1,1  1,1,1     1,1,1 

U2 ∗ − 0,0.5,1 0,0.62,1 0,0.72,1  0.62,0,1 1,0.72,1 0,0.72,1  

U3 ∗ ∗ −   0.32,0,1 1,0,1 0.32,0.5,1 1,0,1 0,1,1 1,0,1 

U4 ∗ ∗ ∗ − 0.5,0,1 1,0,0 0.5,0.62,1 1,0,1 0,1,1 1,0,1 

U5 ∗ ∗ ∗ ∗ − 0.5,0,1     0.72,0,1 

U6 ∗ ∗ ∗ ∗ ∗ − 0.5,0.5,1 0,0,1 1,1,1   

U7 ∗ ∗ ∗ ∗ ∗ ∗ −   0.72,0.5,1 

U8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ −  0,0,1 

U9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1,1,1 

U10 ∗ ∗ ∗ ∗ ∗ − ∗ ∗ ∗ − 

 

Definition 16. Let S = (U,A = C ∪ D) where C = Cl ∪ Cc be a hybrid decision table and Cl = 

{a1,a2,...,apl} be a set of fuzzy condition attributes(Linguistic variables), Cc = {apl+1,apl+2,...,ap} is a set of crisp 

condition attributes. Assuming U/C = {W1,W2,...,Wk}, then for each a ∈ Cl ∪Cc define 

 ∆a(Wi,Wj) = min{δa(Ui,Uj)|(Ui,Uj) ∈ (Wi × Wj)}, (3.2) 

where δa(Ui,Uj) = δa(a(x),a(y),(a(x),a(y)) ∈ (Ui,Uj). 

Using this relation we define the ∆-matrix of U/C = {W1,W2,...,Wk} that is a symmetric k × k matrix, ∆, that their 

entries are given as: 

∆i,j = (∆a1(Wi,Wj),∆a2(Wi,Wj),...,∆ap(Wi,Wj)) 

For instance in previous decision table we have, W1 = {U1,U9}, W2 = {U2} then ∆a(W1,W2) = 

min{δa(U1,U2),δa(U2,U9)} = min{0,0} = 0, ∆b(W1,W2) = min{δb(U1,U2),δb(U2,U9)} = min{0.5,0.75} = 0.5 and 

∆c(W1,W2) = min{δc(U1,U2),δc(U2,U9)} = min{1,1} = 1, then ∆1,2 = {0,0.5,1}. As this process continues, the following 

table is obtained 

Threshold-level Matrix We say that two class Wi and Wj, approximately differ in attribute a ∈ A in γ− level, 

whenever  is the threshold level. First corresponding to each attribute a ∈ A, define a binary 

variable as follow: 

 1 ∆ai,j ≥ γ, 

(3.3) O.w. 

Table 3 

 

 W1 W2 W3 W4 W5 W6 

W1 − 0,0.5,1 0,1,1  1,1,1  

W2 ∗ − 0,0.5,1 1,0.72,1  0.62,0,1 

W3 ∗ ∗ − 0.32,0,1 1,0,0 0.32,0.5,1 

W4 ∗ ∗ ∗ − 0,0,1  
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W5 ∗ ∗ ∗ ∗ − 0.5,0.5,1 

W6 ∗ ∗ ∗ ∗ ∗ − 

By considering all the features, we make the threshold-level matrix that is obtained from ∆−matrix. The 

threshold-level matrix of U/C = {W1,W2,...,Wk} is a symmetric k ×k matrix, Tγ, that their entries are given as: 

 . (3.4) 

For each γ, threshold-level matrix become a discernibility matrix, due to the example 1, thresholdlevel matrix 

with (γ = 0.6) and (γ = 0.5) respectively can be obtain as below: 

Table 4. 0.6-discernibility matrix 

 W1 W2 W3 W4 W5 W6 

W1 − 0,0,1 0,1,1  1,1,1  

W2 ∗ − 0,0,1 1,1,1  1,0,1 

W3 ∗ ∗ − 0,0,1 1,0,0 0,0,1 

W4 ∗ ∗ ∗ − 0,0,1  

W5 ∗ ∗ ∗ ∗ − 0,0,1 

W6 ∗ ∗ ∗ ∗ ∗ − 

Table 5. 0.5-discernibility matrix 

 W1 W2 W3 W4 W5 W6 

W1 − 0,1,1 0,1,1  1,1,1  

W2 ∗ − 0,1,1 1,1,1  1,0,1 

W3 ∗ ∗ − 0,0,1 1,0,0 0,1,1 

W4 ∗ ∗ ∗ − 0,0,1  

W5 ∗ ∗ ∗ ∗ − 1,1,1 

W6 ∗ ∗ ∗ ∗ ∗ − 

Definition 17. let S = (U,C∪D) be a decision table where C is a nonempty finite set of condition 

attributes ,i.e, C = {a1,a2,...,ak}, based on classical set theory, a subset R of C is defined by its characteristic 

function χR, that is a mapping from the elements of C to the set {0,1} by  

χR : C −→ {0,1} 

  1 a ∈ R, 

 

χR(a) = 

  0 O.W 

Let P(C) = {R|R ⊆ C} be the power set of C, based on definition17, each R ∈ P(C) can be obtained by R = 

{(a1,χR(a1)),(a2,χR(a2)),...,(ap,χR(ak))} in which χR(ai) ∈ {0,1}. To facilitate the computation, a one to one 

correspondence function(bijection function) is defined as 

φ : P(C) → {0,1}k 

 φ(R) = (χ1,χ2,...,χk), (3.5) 

in which for each i = 1,2,...,k; χi = χR(ai) ∈ {0,1}. Then, each R ∈ P(C) is mapped to exactly one element of the 

{0,1}p and each (χ1,χ2,...,χp) is mapped to exactly one R of P(C). In other word, φ : P(C) → {0,1}p is invertible and 

 R = φ−1(χ1,χ2,...,χp) = {(a1,χ1),(a2,χ2),...,(ak,χk)} (3.6) 
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is an equivalence relation such that R ⊆ C. Due to table 3, one can see that according to γ = 0.6, C1 and C2 

approximately differ in φ−1({bγ(∆a),bγ(∆b),bγ(∆c)}) = {(a,0),(b,0),(c,1)} = {c}, but according to γ = 0.5, C1 and C2 

approximately differ in 

φ−1({bγ(∆a),bγ(∆b),bγ(∆c)}) = {(a,0),(b,1),(c,1)} = {b,c}. 

Each component points to all the attributes that make object i and object j different. In order to find the reduct 

we can apply the decision-relative discernibility. Accordingly, A. Skowron et al [17], introduce the discernibility 

function. According to their definition, a discernibility function fD is a boolean function of m boolean variables 

bγ(∆a1),bγ(∆a2),...,bγ(∆am)(corresponding to attributes a1,a2,...,am) defined as below: 

 fD(bγ(∆a1),bγ(∆a2),...,bγ(∆am)) = ∧{∨Ti,j
γ |1 ≤ j ≤ i ≤ k,Ti,j

γ 6= 0}, (3.7) 

in which . Note that 3.7 represent all reducts of C based on γ. Now 

we define Si,j as 

 . (3.8) 

Theorem 3.1. Let S = (U,A = C∪D) where C = Cl∪Cc be a hybrid decision table such that Cl = 

{a1,a2,...,apl} is a set of fuzzy condition attributes(Linguistic variables), Cc = {apl+1,apl+2,...,ap} is a set of crisp 

condition attributes and U/C = {W1,W2,...,Wk}. Assuming γ1 ≤ γ2 and R be a reduct of C based on threshold-levels γ2 

then R is a a reduct of C based on threshold-levels γ1. 

Proof. Assume γ1 ≤ γ2 and R is a reduct of C based on threshold-levels γ2. Let a ∈ R then for some i,j ∈ {1,2,...,k}, 

bγ2(∆a
i,j) = 1, due to 3.3 we have ∆a

i,j ≤ γ1 then ∆i,j
a
 ≥ γ2 therefor 

) = 1. Hence R is a redut reduct of C based on threshold-levels γ1.  

Example 2. Due to table 3 and table 3, reducts based on γ = 0.6 and γ = 0.5 are obtained respectively as below: 

fD(b0.6(∆a),b0.6(∆b),b0.6(∆c)) = {0∨0∨1}∧{0∨0∨1}∧{0∨1∨1}∧{1∨1∨1}∧{1∨0∨1} = {1,0,1}. 

Therefore reduct is 

R = φ−1(1,1,0) = {(a,1),(b,0),(c,1)} = {a,c} 

Similarly 

fD(∆a(0.5),∆b(0.5),∆c(0.5)) = {0∨1∨1}∧{1∨1∨1}∧{1∨0∨1}∧{0∨0∨1}∧{1∨0∨0} = {1,0,1}. 

Thus reduct is 

R = φ−1(1,0,1) = {(a,1),(b,0),(c,1)} = {a,c} 

By finding the set of all prime implicants of the discernibility function, all the minimal reducts of a system may 

be determined. 

conclusion 

This paper represents a simple method for feature selection with hybrid attribute(Fuzzy and Crisp). Each reduct 

is corresponds to a minimal element of feasible solutions. Due to the properties of rough set theory. The reducts 

and core are obtained by binary operations. The proposed method is an extremely useful tool in handling the rough 

set theory. In the future work, the proposed algorithm can be extended under the neighborhood concept. The 

efficiency of the proposed method is illustrated by some examples.  
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