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Abstract: The "Online Dial-A-Ride Problem (ODARP)" is discussed in this article and time constraints and 

demand specifics include a deadline to reach the time limit. If a proposal is not filed by its delivery date, it will 

be cancelled. For data limit, only data on the origin is presented whenever the application is received public. And 

until the basis of the request is met, the target of the server is not statistics. The purpose of the problem is to 

schedule a server movement so that its deadlines can be met for a determined figure of queries (or the extreme 

amount of goods). We examine competitively several deterministic strategies with various constraints on the 

problem. And in various cases this paper shows many lower limits on the competitiveness of any deterministic 

algorithm for the problem. 

Keywords: Online Dial-a-ride Problem, Competitive Analysis, Deadline, Information. 

 

1. Introduction  
DARP has been extensively investigated in the field of "organisational analysis, management science, and 

mixture optimization" because of its usefulness to the transportation and logistics sectors. In DARP, there are 

routers that travel through a number of metric areas to support bookings. For each ride, the position is specified 

in the topological space, source, start and destination. The issue is to build server routes through metric space in 

order to make all of the necessary rides and meet some criterion of optimality. Many new side limitations were 

applied to the issue to satisfy real-life needs. One important extension is the deadline problem of Dial-A-Ride. In 

other words, each application sets a deadline. If the application is not submitted by the due date, it will be 

withdrawn. The aim is to schedule the movement of servers so that their deadlines reach the full number of 

requests. Online requests are made over time during the natural setting when servers support other trips. And, 

once raised, the servers do not know at all times about potential requests. In other words, it's time to make and 

enforce decisions in online problem-setting. Taxi and minibus systems, postal services and elevators are 

examples of such issues in practice. In addition, an offline algorithm already has knowledge of all the 

applications for the entire list. The details on the request is usually known if a certain request is being sent. This 
ensures that the source and destination of the trip are clearly specified when presented during the release period. 

However, full ride requirements are not feasible in many practical circumstances. Sometimes only the ride source 

is provided when the application is released. Unless the server enters the source, it is not possible to obtain 

information about its destination. These models, e.g. the issues with the taxi or lift.[1-6] 

Throughout this paper we are analyzing the ODARP for the first time with only a short deadline (this is 

called ODARPI). In ODARPI, a Server with some limited capacity travels in a metric space at a speed unit to 

satisfy a collection of travel requests that take items from resources to destinations. Increasing requirement has a 

time limit. When an application must be sent, the server must meet the point of origin of the request by its time 

limit. The purpose of the algorithm is to satisfy as many requirements by the deadlines as possible [7,9]. Until 

the application is published, the online algorithm for the problem does not know details. If a request is sent, all of 

the information on the request is made available to the online server (including the tool, destination, etc.). 

Secondly, the ODARP is analyzed with a time limit [8-11] and information limitation (reference is provided to 

ODARP2). Only information about the source is provided in this version of the problem when a request is 

submitted [12-16]. When the request source hits, the server does not have the information about the destination. 

Rides are called on as the server runs. Some products are there. The aim is to schedule the server 's movements 

online in order to deliver the maximum number of products via request deadlines. For more than three decades 

ODARP and vehicle routing and scheduling issues were extensively studied (see (13) for a topic study). In most 

earlier studies on online routing issues, Based on the targets for the markup set [4, 5, 7], weighted completion 
times[17-24] and a maximum / average flow time [11, 13]. The document [6, 15, 16] presented the findings 

concerning the problem of online k-taxi scheduling, in which the request is based on a two-point graph or metric 

space (a source and a target). A related issue was subsequently explored in the K-truck online scheduling issue 

[25]. Both sides believe k servers (taxis or lorries) are free when a new request for service occurs and aim at the 

total distance of servers travel. (4) ODARP is researched in which rides are named during the server 's journey. 

The authors have found two separate situations in which the server is able to do so and the server is able to do so. 

ODARP's first findings have been presented in a restricted knowledge model[14-18], which aims at reducing the 

period during which all the rides have been conducted on the server and returned to its root. All these works 

presumed that the requests should wait until they had been completed by the server [26 - 29]. In other words, 
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they did not respect the time limits. The offline view is the bulk of previous works on the DARP with time limits. 

The feedback is well understood in advance. See [8, 9, 31-33] for other linked plays. With the analysis of 

ODARP1, we are performing only a deadline test for REPLAN, a deterministic algorithm similar to BATCH 

algorithm in [17] which is competition with 4(1+34), when unit capacity is on the server, and -L -competitive 

when the server has infinite power, when I indicate a diameter of a general room' FCFS in uniform metric space, 

with 2Z and Creedy algorithms in K. First Come First-Serve algorithm (FCF Serving) Restricted metric space 

with 2ZR, where 2 are the server capacity and K shows the diameter for k Restricted metric space. For two 

versions of the problem, the remaining paper is arranged as follows, we also show a set of lower limits for the 
competitive ratio of any decisive algorithm [19-23, 27,29] We give some notes and assumptions in section 2. 

Section 3 presents the REPLAN algorithm and its competitive analysis on ODARPL Section 4 includes 2 online 

ODARP2 algorithms and two different types of metric spaces to discuss their performance [30-34]. 

 

2. Annotations and Symbols 
Let 'M = (X, d) be an undirected space induced by an undirected G = (V, E) graph with V = X' with n points, 

i.e. for any pair of M metric points, we have d(x, y), which is the shortest G path between vertices of X and Y.In 

order tobe in metric space between the two points, the diameter of a metric space is as high a time as possible as 

L. L. In this article we take into various metrical forms of space, coherent “metric space and K-confined metric 

space. The unit length of the standard metric space is the distance between two points. It can be regarded by the 

use of a full graph with unit range weights as a specific metric space. "d max / d min = K, where dmax = max 

d(x) = dmin (x, y), dmin = dmin (x, y), x, X m, y mt, V mm." We assume that dmin equals 1 without losing the 

generality and dmaxKlong is in the K-fixed metric field. So K is basically the diameter of the metric space that is 

confined to K so we can conclude that the server is moving in the metric space at speed 1. In uniform metric 

space, K=1 should be noted. The basic ODARP instance in the metric space M requires a sequence of 

applications R: (r1, r2,...rm). Every request shall be fourfold “ri = (ti, zi, ai, bi) μ R R ~N = X THIS X” with: Ti, 

ć R shall be the time that request ri is made, shall be made public, and Zi ′ N shall be the quantity of goods that 
shall be transmitted on the server, Ai x and Bić are the source and destination, and the goods corresponding to 

the request ri shall be transmitted on the server. The server capacity is finite and constant Z is indicated. This 

implies that the maximum limit of the loaded products on the server is two units. In ODARPI we assume z, for 

everyone I have 1 constant and Z an infinite value can be assumed. In ODARP2, we consider ziom Z 

omnipotence, to be completely inaccurate. And the products of the applications are partial. That is to say, if a 

certain application has several products, it can be divided into many partitions in the sense of the server's current 

power. Such partitions can be loaded by the server. And the remainder can be regarded as the products of new 

demands. In this paper we assume that in order for non-discriminatory release times the sequence R = 

(r1,r2,...,rm) of the requests is given, i.e. 0 = tott1 fat 2 complete alltm. An application is said to have been 

approved if the corresponding object is retrieved by the server on source and if the corresponding element is 

transported” to the destination, the request will be completed. We are not permitting preemption: an authorized 

request is not permitted at any other location than its destination. This ensures it is not called off until a request is 

approved. Furthermore, the following assumptions are taken into account in this paper: a) Server speed is 

constant 1. This implies that the distance between the two points exactly is the time it takes to fly from one 

location to another; b) The deadline for all requests is standardized and is stated in T. In order to ensure that the 

problem is feasible, T to dmin in the metric space with K constraints and T to 1, in the metrically uniform space 

are assumed. By competitive analysis [1-3], which has evolved as a standard measure of success, we evaluate the 
efficiency of online algorithms. The output of an online algorithm is contrasted with the efficiency of the 

optimized offline algorithm that knows all future employment in competitive analysis. An algorithm A for 

ODARP is referred to as "highly competitive," where for any case, R is at least 1 / α more freight completed by 

A than by an optimal off line algorithm OPT. ODARP has the amount of freight supplied by A. 

 

3. Algorithms 
In this section, where “the Server has unit capacity and the infinite power of the Server in two separate cases, 

we give a RE PLAN algorithm for ODARPI. This section demonstrates the efficiency assurance for the 

algorithm. We take for granted that the deadline for the submission is T=1 in ODARPI for the purpose of 

analysis. 

 

REPLAN Algorithm 
Increasing step is divided into the basic plan with the REPLAN algorithm. We will take a certain time-span 

to fulfil a particular subset of requests at the start of the interval as the basic plan. The interval size is 1/2. The 

server stops and preplans at the start of each interval, providing a com with an ideal 1/2-long schedule starting 

from the current server location that the maximum number in the preceding interval of requests can be 

completed. Then the new fundamental plan continues to be used. 
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Theorem 1: “Provided that the server is unit-capacity (Z = 1), for any metric space with L < 1/2, REPLAN is 

4(
1+2𝐿

1−2𝐿
)-competitive for ODARPT”.  

Proof: The server has ability 1 i.e. at most 1 object can be transported simultaneously. If the serve has 

accepted a request, it cannot accept another request until the approved request is completed. Let Ribe the set of 

all requirements arrived at interval I and let Riy be Ri's subset, finished at interval j. “Obviously, “Rij - Ø for all j 

ϵ {i, i +1,i+2,i +3}. Let Bopt(R)”denote the number of requests completed by OPT on a request sequence R. 

Suppose the last request arrives in mth interval, then in the application series R, denote the number of requests 

completed by OPT”. Assume the last question enters mth, then, 

 

“Bopt(R) =∑ (|𝑅𝑖,𝑖| + |𝑅𝑖,𝑖+1| +  |𝑅𝑖,𝑖+2| + |𝑅𝑖,𝑖+3|)𝑚
𝑖=1 ”      (1) 

 

Where“|𝑅𝑖,𝑖|𝑈|𝑅𝑖,𝑖+1|𝑈|𝑅𝑖,𝑖+2|𝑈|𝑅𝑖,𝑖+3|Ri”. At the start of interval I REPLAN carries out the main strategy, 

discovers a new plan and executes it. One way to RE is to choose the biggest choice of“Ri-1,i-1, Ri-1,i,Ri,-1,i+1 and 

Ri-1,i+2”. At the start of an interval we distinguish between two cases depending on the OPT Server status. 

The first is, at the beginning of any interval, that the OPT extreme is zero. Each one of these means “Ri-1,i-1, 

Ri-1,i,Ri,-1,i+1 and Ri-1,i+2.”OPT may be served at one single period (accepted and fulfilled). This means there is a 

maximum 1/2 round of rounds covering the entire Ri-1,i-1 field. The same is true for “Ri-1,i,Ri,-1,i+1 and Ri-1,i+2. 

Let Rmax = {R'|R'| = max(|Ri-1,i-1,|,|Ri-1,i|, |Ri-1,i=1| |Ri-1,i+2|be the set of requests which is the largest” of “Ri-1,i-1,Ri-

1,im, Ri-1,i+1 and Ri-1,i+2.”The tour that covers Rmax is marked by lmax. Now, at the highest possible starting point 

on the route lmaxREPLAN's servers can take up to a certain time, and then it can take 1/2-L to satisfy further 

requests in Rmax from an ideal location. The REPLAN server will be serving at least (1-2L) requests during 1/2 

– L times because it requires 1/2 time to service Rmax. Therefore at least (1/2 – L) is the number of requests the 

REPLAN server will handle for interval i. We have denoted the total number of request sequence R by BRE(R) 

that REPLAN will serve, 

 

“BRE(R)≥ (1 − 2𝐿) ∑ max (|𝑅𝑖−1,𝑖−2|, |𝑅𝑖−1,𝑖|, |𝑅𝑖−1,𝑖+1|, |𝑅𝑖−1,𝑖+2|𝑚+1
𝑖=2 ≥ (

1−2𝐿

4
) ∑ (|𝑅𝑖,𝑖| + |𝑅𝑖,𝑖+1| +𝑚

𝑖=1

|𝑅𝑖−1,𝑖+2||𝑅𝑖−1,𝑖+2|)=
1−2𝐿

4
𝐵𝑂𝑃𝑇 (𝑅)”      (2) 

 

Secondly, the server of the OPT actually holds an object for an application. It can be proved in the same way 

that 

“𝐵𝑅𝐸 (𝑅) ≥
1

4
(

1−2𝐿

1+2𝐿
)𝐵𝑂𝑃𝑇 (𝑅)”       (3) 

 

So we can say REPLAN is 4(
1−2𝐿

1+2𝐿
) -competitive with unit-capacity for ODARP1 in any L < 1/2 metric 

space.  

 

Corollary1:“Provided that the server has infinite capacity (Z = ∞), for any metric space with L < 1/2, 

REPLAN is 
3

1−2𝐿
-competitive for ODARP1”.  

 

The proofs of corollary 1 is similar to the proof of theorem 1. 

 

4. Second Algorithms  
In this part we show firstly that “there is no competitive deterministic algorithm for ODARP in an 

unconstrained general metric space where time windows T > 0 are arbitrary. Then we study ODARP2 with two 

unique types of metric space in a uniform metric space and in K-limited metric space. We give FCFS uniform 

metric space and greedy algorithm for K-controlled metric space. The effectiveness guarantees of the two 

problem algorithms are shown in this section. 

Proposition: If the time limit T > 0 is arbitrary, a metric field in which a constant competitive ratio of 

ODARP2 cannot be achieved by a deterministic online algorithm. 

 

Proof: Take a metric space that includes a line. At 0, two requests are sent on the line with one product 

package. For a request, the server must load the product at position T and transmit it to position 2 T, where T is 

the request time period. The server also needs moving the products from position -T to position —2T. Note, if 

the server does not rive to the source in time T the requests will be shut down. If the online server does not leave 

for the requests immediately, the series will be stopped and no requests will be served. If not, we presume that 
the online server is in location -T at the time T, without loss” of generality. “At the time when the off-line server 

enters T at T and delivers the items at 2 T at 2 T destination. Then the source position t and the destination 



Oadrp Having Issues with Due Date and Limitations with Information 

566 

 

position t+T (2 + i)T I = 0,1,2, etc.) are displayed on request from time t = 2T”. All requests can be handled by 

the off-line server but not by the on-line server.  

 

4.1. FCFS Algorithms for ODARP2 in Uniform Metric Space 

 

FCFS Algorithm 
The FCFS algorithm works like this in a uniform metric space. The online server must always accept the 

original request first of all for a long time, receive data on the destination, collect the goods and then transfer 
them to the destination. If no definite requests can be processed in time after a particular request has been 

completed, the server stays at its current position and waits for new requests. 

 

Theorem 2: FCFS algorithm is 2Z competitive with ODARP2 in the uniform metric space, where Z is the 

server 's power. 

 

Proof: Due to any input sequence R, these maximum sequences of m can always be divided into, “R = (R1, 

R2,..., Rm) that in each sub-sequence Ri = (ri,1,ri,2,...)(1≤ 𝑖 ≤ 𝑚)”, the online database operates simultaneously, 

i.e. it continuously answers Ri Applications one by one. We test an arbitrary Ri sequence for the first time and 

extend it to the whole R-series. We are going to show that in any subsequent series OPT cannot bring (or collect) 
up more than 22 times the number of products according to the theorem. 

Represent the time the first request "tilinRi" was published. Let, “u ϵ Ri, and ri,l’ϵR”, be respectively the last 

re searches of FCFS and OPT. “Let tFCFS be the time when FCFS reaches ri.l's travel destination and tOPT refers to 

the time the OPT reaches ri, l 's travel destination. We set t * to ensure (tOPT-t*)/2 is a complete integral and t1 t * 

to total + 2. For tFCFS and tOPT”, there are two potential instances. 

 

Case 1. “FCFS completes ri,l no later than time topt, i.e., tFCFS≤tOPT.It can be proved that tOPT-tFCFS< 2.Provided 

that the subsequence Ri is maximal and that the server operates continuously in Ri, no further requests from Ri 

can be sent at t >tfcrs. Just two units of time are required to collect and deliver the goods at their destination on 

one order at the source. In any time, therefore, “(t, t + 2] for t = t*, t* + 2,..., tOPT– 2”, FCFS 'server may collect 

and/or deliver at a destination for at least a unit of goods while the OPT server is unable to collect and/or deliver 
more than 22 units of goods at the source because of the finite capacity of Z. In the interval (t1, t *], at least one 

request with one goods unit can be accepted on the FCFS server and no more than 2 requests (with 2Z units of 

goods) can be accepted on the OPT server, because t * – t1 We note that the number of goods accepted by the 

server (picked up)” is equal to the number of goods transported (delivered) since the prevention is not allowed. 

Therefore, we can tell the OPT to be no more than 27 times as much transiting goods as FCFS at any interval of 

"(t1, t *) and (t, t+2) for t = t *, t+2,....,topr – 2." 

 

Case 2. FCFS still works after time “topt, i.e., tfcfs>topt. Obviously, in each interval (t, t + 2] for t = t*, t* + 

2, …tOPT - 2, OPT can transport at most 2Z times as many goods as FCFS does. It also holds in the interval (t1, 

t*]” 

 

4.2 Greedy Algorithm for ODARP2 in K-Constrained Metric Space 

 

Greedy Algorithm (GR) 
The GR is described as “follows in the K-restricted metric space. Whenever the processor enters the metric 

space, the source of the request that is the least time path out of its current location will be identified amongst all 

the unknown requests, to be able to meet the goods within their timeframes, collect the goods and provide 
information on the destinations before they are over weighted. It then delivers to its destinations the products of 

the approved requests. 

 

Theorem 3: The Greedy algorithm in the tightened metric space is 2ZK competitive for ODARP2, where Z 

is the server capability and K indicates the metric space diameter. There are a few shifts in the facts of theorem 3. 

The knowledge here is incomplete. 

 

Corollary 2: GR is 2Z-competitive for ODARP2 in the uniform metric space”.  

 

5. Lower Bounds 
In this section the competitive ratio for all deterministic online algorithms to fulfil the requests in the 

ODARPI and ODARP2 versions is less constrained. The results are achieved when the optimal algorithm is 

considered an opponent which defines the request sequence in such a way that the online algorithm performs 

poorly. However, the confirmation of the findings for page limits is omitted.  
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5.1 Lower Bounds for ODARP1 

 

Theorem 4 

 
Corollary 3: Provided the unit capacity (Z=1) of the server is available, for any L<1/2, a metrical space of 

the diameter L can not be obtained with a competitive ratio less than 
2−𝐿

2𝑙
[

1

𝐿
] in an online deterministic algorithm. 

Where the server 's capability is infinite (Z = ∞), for each L < 1/2, a metric space with a diameter L cannot be 

achieved in a competitive ratio below any deterministic inline algorithm.
2−𝐿

2𝑙
[

1

𝐿
]for ODARPI.  

 

5.2 Lower Bounds for ODARP2 

 
Theorem 5: There can be no competitive ratio of 2 for ODARP2, where 2 is server power, for the uniform 

metric space. Online algorithms can be deterministic. 

 
Theorem 6: No deterministic online algorithm can achieve less competitive ratios of KZ in the K-restricted 

metric space than in ODARP2, where Z is the server's capacitance and K denotes the metric space 's diameter. 

 

6. Conclusions 
In this paper we address the issues with time limits and knowledge in a wide range of realistic contexts online 

dial-a-ride. We are providing an online ODARPI algorithm in two kinds of metric space and two online 

ODARP2 algorithms. We evaluate REPLAN's efficiency for ODARPI, and FCFS for Upper Boundaries 

ODARP2 in “the uniform metric space, GR in the k-fixed metric space for ODARP2. For each problem in 

different situations, it would also be necessary to analyze other similar metric spaces (like trees, cycles) to test if 

better boundaries can be found. We also provide analysis for the lower limits of the competitive ratio of any 

deterministic” algorithms. The crew preparation in which more than one Server is used to handle the requests is 

an interesting extension of the problem. 
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