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Abstract 

In this paper, mathematical formulation of navigation problem using Riemannian &Finsler 
geometry is discussed.Special situations with complete mathematical solutions of the problemare 
mentioned, namelyFinsler space with constant flag curvature and other. Modeling of the aircraft 
motion is introduced. 
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Introduction 

It is well known that the straight line is the shortest path in the Euclidean space 𝐸𝑛with the 
standard norm, which induces the distance function. On the sphere Sn, again with the natural 

distancefunction induced by the norm defined on tangent vectors andinherited from the standard 
norm on the ambient space 𝐸𝑛+1,locally, the shortest path is a part of the main circle. On a 
generalRiemannian manifold, this is the property of geodesic curves.However, in a more general 
context, the norm does not haveto come from the Euclidean scalar product. In the more general 
setting, a Minkowski norm on a vector space is not symmetric,hence the length of a vector may 
be different than the length ofthe opposite vector. Consequently, in a Finsler space, the length  

of a curve travelled in one direction may be different than thelength of the same trajectory 
travelled in the opposite direction.However, geodesics are still well defined as shortest curves 
connecting their points that are close enough.Imagine a ship sailing in a sea without any current 
andwithout any wind. The situation can be well described by thetools of Riemannian geometry, 
where shortest curves (fastesttrajectories) are geodesics. However, if a wind or a current is 
present, then obviously the time required to travel some distancein one direction is different than 
the time necessary to travelthe same distance in the opposite direction. There are various 
geometrical techniques how to describe this situation. One ofthem is the mentioned Finsler 
geometry, where the wind or thecurrent modify the Riemannian metric to a general Finsler 
metric. 
We shall introduce this description and some interesting related phenomenon. 

ELEMENTARY RIEMANNIAN AND FINSLERGEOMETRY 
Let us recall that the Euclidean vector space is a vector space witha symmetric and positively 
definite bilinear form . This bilinearform induces the norm (length) of vectors by the formula |𝑣| = √𝑔(𝑣, 𝑣) 
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length of the curve is the time necessary for traveling along thecurve with the unit speed. Using 

the length of curves, we candefine the distance of two points x and y of M as the infimum 
of lengths of all curves connecting and y. For any two points x andy in a Riemannian manifold, 
the distance from x to yis the same asthe distance from y to x.Geodesics in the Riemannian 
manifold (M, g) are curveswhich are extremals of the length functional and they are the 
best possible analogues of lines in the Euclidean space. Theimportant property of a geodesic γ is 
that for any two pointson γ which are close enough, γ is the shortest curve connecting 
these two points. Hence, the distance of these two points isrealized by this geodesic γ. Geodesics 
are obtained as solutionsof a system of differential equations. Another important 
property is that, given a point x in M and a tangent vector v inthe tangent space of M atx, there 
exist a unique local geodesicγ(t) such that γ(0) = x and γ’(0) = v in other words, the position 
at the beginning is x and the velocity at the beginning is v. Ifthe Riemannian manifold (M, g) is 
complete, then for any x of Mthere is a neighbourhoodU of x such that any point y of U can be 
joined with x by the unique minimizing geodesic lying in U. Inthe Euclidean space with the 
standard norm, geodesics are thestraight lines. In the sphere with the natural Riemannian metric,  
geodesics are the main circles. The above mentioned propertiesof geodesics allow us to consider 
geodesics as the most naturaltrajectories in general Riemannian manifolds. 

.  
 
NAVIGATION DATA AND RELATED RANDERSMETRIC 

Let us discussed the real problem of the ship on the sea.Let us consider the surface of the sea  to 
bethe two-dimensional space 𝐸2 equipped with the standard norm. In the more general case, the 
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sea canbe modelled by the two-dimensional sphere with the natural Riemannian metric. 
However, in full mathematical generalitythe sea can be any Riemannian manifold of arbitrary 
dimension.The possible tracks of the ship are curves on the manifold andit is natural to aim at the 
destination in the shortest possibletime. To measure the length of particular trajectories, or 
thetime necessary for travelling these particular trajectories,respectively, we use the Riemannian 
metric h on M and theintegral above. Naturally, the curves of interest are geodesicswith respect 
to this metric 
In 1931, E. Zermelo studied the following problem ([4][5]): 
Suppose that a ship sails on the open sea in calm waters and a mild breeze comes up. How must 

the ship be steered in order to reach a given destination in the shortest time? 
The problem was solved by Zermelo himself for the Euclidean flat plane and by Z. Shen([9][10]) 
in the case when the sea is a Riemannian manifold (M, h)under the assumption that the wind Wis 
a time-independent mild breeze, i.e. ℎ(𝑥, 𝑊)  < 1. Recently, Zermelo navigation problems on 
Finsler manifolds have been discussed and applied widely by many scholars (e.g. [4][8][6]). 
Essentially, Zermelo navigation problem is tightly related to the geometry of indicatrix on a 

Finsler manifold. Let us consider a Finsler manifold (M, Φ). For each x ∈M, the indicatrix𝑆Φof 
at xis a closed hypersurface of 𝑇𝑥𝑀around the origin xdefined by                                                            𝑆Φ = {𝑦 ∈ 𝑇𝑥𝑀|∅(𝑥, 𝑦) = 1} 

Let W=W(x)be a vector field on M. Consider the parallel shift 𝑆∅+{W}of 𝑆∅along W. It is easy 

to see that y∈𝑆∅+{W}if and only if Φ(x, y−𝑊𝑥) =1. Further, when Φ(x, −𝑊𝑥) <1, 𝑆∅+{W}contains the origin xof𝑇𝑥M. In this case, it is easy to see that, for any y∈𝑇𝑥M\{0}, there 

is a unique positive number 𝐹 = 𝐹(𝑥, 𝑦)  > 0such that  𝑦𝐹(𝑥,𝑦) ∈ 𝑆∅+{W} 

 
that is, F=F(x, y)satisfies the following  ∅ (𝑥, 𝑦𝐹(𝑥, 𝑦) − 𝑊𝑥) = 1 

It is not difficult to show that F=F(x, y)is a regular Finsler metric. On the other hand, when 
Φ(x, −𝑊𝑥) =1, 𝑆∅+{W} must pass thorough the origin xof 𝑇𝑥M. In this case, for any 

y∈𝐴𝑥:={y∈𝑇𝑥M |gw(y,W)>0}, there is still a unique positive number 𝐹 = 𝐹(𝑥, 𝑦)such that 𝐹 = 𝐹(𝑥, 𝑦)satisfies (1.1), equivalently, 𝐹 = 𝐹(𝑥, 𝑦)satisfies (1.2). Obviously, such 𝐹 =𝐹(𝑥, 𝑦)is a Finsler metric with singularity and not regular on whole TM. We call 𝐹 = 𝐹(𝑥, 𝑦)a 

conic Finsler metric (for the definition and fundamental properties of conic Finsler metrics, see 
[7]. Actually, the conic Finsler metric 𝐹 = 𝐹(𝑥, 𝑦)is regular on conic domain 𝐴 ≔∪𝑥∈𝑀 𝐴𝑥 ⊂𝑇𝑀. Inevitably, it is natural to meet conic Finsler metrics in studying natural sciences.  
In general, Finsler metric 𝐹 = 𝐹(𝑥, 𝑦)obtained from (1.2)is called a solution of the Zermelo 

navigation problem with navigation data (Φ, W)([8]). 
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Modeling of the aircraft motion 

In order to define the place of an aircraft in space, the coordinates of the center of mass of the 
aircraft and the position of the connected coordinate system with respect to a stationary 

coordinate system (for example that one can be the coordinate system connected to the ground) 
have to be given. To describe aircraft dynamics can be defined six ordinary differential equations 
(ODEs). The first three of themare the so called Euler ODEs 𝑑𝛾𝑑𝑡 = 𝜔𝑥 − (𝜔𝑦𝑐𝑜𝑠𝛾 − 𝜔𝑧𝑠𝑖𝑛𝛾)𝑡𝑎𝑛𝑣 𝑑𝑣𝑑𝑡 = 𝜔𝑦𝑠𝑖𝑛𝛾 + 𝜔𝑧𝑐𝑜𝑠𝛾 𝑑ψ𝑑𝑡 = (𝜔𝑦𝑐𝑜𝑠𝛾 − 𝜔𝑧𝑠𝑖𝑛𝛾)𝑠𝑒𝑐𝑣 

where𝛾 denotes roll angle, 𝑣 the pitch angle, ψ the yaw angle and 𝜔𝑥,𝜔𝑦, 𝜔𝑧are the angular 

velocities. 

The other three kinematic equations give a relation between the derivatives of the coordinates of 
the center of mass in normal ground coordinate system 𝑂𝑋𝑔𝑌𝑔𝑍𝑔with projection of the linear and 

angular velocities. 

 𝑑𝑥𝑔𝑑𝑡 = 𝑉𝑥𝑐𝑜𝑠ψcosv + 𝑉𝑧(𝑠𝑖𝑛ψsinγ − sinv cos ψcosγ) − 𝑉𝑦(𝑠𝑖𝑛𝑣𝑐𝑜𝑠ψsinγ + sinψcosγ) 𝑑𝑦𝑔𝑑𝑡 = 𝑉𝑥𝑐𝑜𝑠𝑣𝑠𝑖𝑛ψ − 𝑉𝑧(𝑐𝑜𝑠ψsinγ + sinvsinψcosγ) − 𝑉𝑦(𝑐𝑜𝑠ψcosγ − sinvsinψsinγ) 𝑑𝑧𝑔𝑑𝑡 = 𝑉𝑥𝑠𝑖𝑛𝑣 + 𝑉𝑧𝑐𝑜𝑠𝑣𝑐𝑜𝑠γ + 𝑉𝑦𝑐𝑜𝑠𝑣 𝑠𝑖𝑛𝛾 

Many of the components of the above stated equations are not a matter of interest of the present problem, 
since it concerns the airplane dynamics as a moving mass point and there is no need to be considered the 
characteristics of the body shape (γ = 0, the yaw angle- ψ=θ -heading angle, the pitch angle- ϑ=α -angle of 
attack). Then the system of ODEs transforms into: 𝑑𝑥𝑔𝑑𝑡 = 𝑉𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛼 𝑑𝑦𝑔𝑑𝑡 = 𝑉 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝜃 
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𝑑𝑧𝑔𝑑𝑡 = 𝑉 𝑠𝑖𝑛𝛼 

Passing through a plane inclined at 𝛼 =  𝜋: 
  

𝑑𝑥𝑔𝑑𝑡 = −𝑉𝑐𝑜𝑠𝜃 𝑑𝑦𝑔𝑑𝑡 = −𝑉 𝑠𝑖𝑛𝜃 

During the flight of an aircraft as a mass point, except the coordinates, a change of mass is 
observed, caused by fuel consumption. For a short range flight this change of mass is negligibly 

small and the assumption as w = const, 
𝑑𝑤𝑑𝑡 = 0 is a very suitable one. But for long range flights 

the change of mass is very significant and must be taken into consideration. 𝑑𝑚𝑑𝑡 = −𝐶𝑠𝑔 , where 𝐶𝑠-fuel flow rate and g- gravitational acceleration. 

Therefore, assuming g = const, and putting f =  
−𝐶𝑠𝑔  , the expression can be simplified.  𝑑𝑤𝑑𝑡 = −𝑓 

In the process of model preparation one more assumption have to be analyzed, namely that the 
main part of the passenger aircraft flight is the so called cruise flight. Cruise flight is an airplane 
flight in a horizontal plane with cruising velocity. The characteristics of this velocity are: 

 • balance of the acting forces, which in horizontal plane is given by T h = D, where T h - thrust 
and D-drag 

, • very slight dependence of fuel flow rate on the velocity of the airplane, and 

 • Minimum fuel burn per kilometer (maximum range).  

As a result of that overview, a system of three ODEs is achieved, such that the optimal trajectory, 
should solve them under some additional conditions. 

 �̇� = −𝑉𝑐𝑜𝑠𝜃 �̇� = −𝑉 𝑠𝑖𝑛𝜃 �̇� = −𝑓 
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Statement of the Optimal Control Problem  

The purpose of the current work is to determine an aircraft trajectory, from an initial point to a 
final destination point and more precisely to determine a trajectory of the center of mass of an 

aircraft in a 2-D horizontal coordinate system. In here the approach of [2,3](Sridhar, Chen, Ng 
and Linke) is followed. It is required by the authors that to establish such kind of trajectory 
travelling time between the two points, taking into consideration the presence of wind, while 
avoiding regions of airspace, which are forbidden to be used must be minimized. These regions 
can be no-go-areas or parts of the airspace, which represent any kind of danger for the aircraft or 
facilitate persistant contrail formation. First the wind is introduced in the ODEs, characterizing 
the motion of a mass point in horizontal plane. �̇� = −𝑉𝑐𝑜𝑠𝜃 + 𝑢(𝑥, 𝑦) �̇� = −𝑉 𝑠𝑖𝑛𝜃 + 𝑣(𝑥, 𝑦) �̇� = −𝑓 

where𝑢(𝑥, 𝑦) 𝑎𝑛𝑑 𝑣(𝑥, 𝑦) are the wind velocity components along the x- and y - axis, which can 
be functions of both x and y coordinates and also sometimes of the time t. The horizontal plane 
trajectory is optimized as finding the control variable - heading angle θ, for which cost functional 
attains minimum. The undesirable regions are formulated as soft state constraints. As a result a 
constrained optimization problem needs to be solved. To do that there are numerous approaches 

as: the Lagrange multiplier method, the augmented Lagrange multiplier method, penalty function 
method and so on. Considering the nature of the particular problem a penalty function method 
was chosen. 

Conclusion 

The Mathematical formulation of the Zermelo Navigation problem using Riemannian and Finsler 
geometry was introduced.Some special situations with the complete solutionof the problem were 

mentioned. The research in other special situations and other possible ways of the description of 
the problem were indicated. The potential for the further study is huge because the problem is 
too complex to be solved explicitly in full generality. 
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