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Abstract: This work shows the conditions that ensure the efficiency of the device for extracorporeal 

detoxification using new technologies using magnetically controlled sorbents. The above technique allows 

calculating and, accordingly, optimizing the parameters of one of the important components of this device - the 

unit for sorption and removal of toxins from biofluid. A weighted estimate of the required concentration of 

magnetically controlled sorbents in the biofluid being purified, the amount and concentration of an emulsion 

containing a magnetically controlled sorbent, and the duration of the procedure ensures the safety and 

effectiveness of this method of medical care. 
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Introduction 

The principle of using magnetically controlled sorbents in detoxification processes consists in introducing them 

into the environment to be cleaned (blood, plasma, lymph) and absorbing (sorption) of harmful impurities 

contained in biofluid on the developed surface of magnetically controlled sorbent granules. Then, using a 

magnetic field, the waste particles are separated and removed together with harmful impurities from the biofluid 
bed. The effectiveness of the sorbent depends on its particles size [1-6]. For granulated sorbent, the capacity can 

be very high due to the nano- and microdisperse structure of the suspension of magnetically controlled sorbents: 

the size of the granules can vary from 50-60 nm to several microns.  

Accordingly, the specific (per unit mass of particles) surface area of magnetically controlled sorbents can reach 

several thousand m2. A layer of an active sorbent, for example, activated carbon, is applied to the surface of each 

granule. Taking into account the small size of the particles themselves of magnetically controlled sorbents, the 

thickness of its adsorbing shell (layer of activated carbon) is negligible - in the limit it can be a monolayer of 

carbon atoms. As is known, the rates of the establishment of adsorption-desorption equilibrium in carbon 

coatings of small thickness are significantly increased, which provides a high speed of the specified method. The 

same effects were applied for creation and modelling of composite materials of various nature [7-21]. 

It should be noted that the total area of the adsorbing surface is so large that desorption practically does not 

reduce the surface density of the reagent. For magnetically controlled sorbents with small particles covered with 
thin carbon shells, the equilibrium concentration of the adsorbate in the near-surface layers of the sorbent is 

established very quickly. Therefore, with a sufficient concentration of magnetically controlled sorbents in the 

biofluid being purified, a decrease in the concentration of toxins to preset values is achieved almost instantly.  

Hence, it is clear that the concentration of the reagent in the biofluid does not depend on time. It installs almost 

instantly and remains unchanged. In addition, the concentration of the reagent does not depend on the amount of 

the sorbent used, because usually there is a lot of it, taking into account the specific surface area of more than 

100 m2/g. This facilitates its dosing, for example, in order to ensure the required concentrations of solutions or 

medical dosage rates. At the same time, the biofluid processing process can be carried out in real time, it 

becomes cheaper, its productivity and environmental friendliness increase. 

The choice of the type of sorbent material is based on the analysis of its physicochemical characteristics, taking 

into account the functional task assigned to it. 
It should be noted that among many known types of sorbents, the use of activated carbon as a sorbent shell, 

taking into account the extremely developed pore surface, which, moreover, is easily accessible, seems to be 

quite promising. 

 

Evaluation of the parameters of the detoxification system 

For convenience, we present a typical graph of the Langmuir adsorption isotherm in the form of two graphs, 

using a scale aC with two scales, as shown in Fig. 1, where curve 1 with a lower scale and curve 2 with an 

upper scale represent, respectively, the initial and final parts of the adsorption isotherm in the form

max ( )aC   . The values  and max , which determine the current amount of adsorbed substance and 

the maximum amount of adsorbed substance by the surface of the sorbent, are determined empirically by known 

methods[22-31]. 

It is clear that the lower curve in Fig. 1 corresponds to a solution with the concentration of the dissolved 

(adsorbed) component in the segment 0, 300 . Then the curve becomes so flat that it is more convenient to 

trace its change with a significant compression of the scale along the abscissa axis (300 times). 

mailto:gxtl@mail.ru


Application of Magnetically Controlled Sorbents for Detoxication  
 

 

521 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure: 1. Typical dependence of the relative filling of the adsorbent surface max    on the adsorbate 

concentration aC  in the biofluid being purified. 

Fig. 1shows, that in the initial section, the concentration of the dissolved adsorbate aC  is almost linearly related 

to the relative density of its distribution on the surface of the sorbent . With the transition to the saturation 

region, the rate of filling the sorbent surface significantly decreases and the sorbent loses its former efficiency. 

Therefore, it is advisable to choose the operating mode of the sorbent in the linear section of its operation, for 

example, when the density coefficient is 0.4  . The equilibrium state in this process is very similar to heat 

transfer regularities described in [32-41].  

To assess the main parameters of the extracorporeal detoxification system using this sorbent, let us take a unit 

volume of biofluid with a toxin, for which the MPC level, for example (CMPC=30 conv. units) 

Along the curve in Fig. 1 we find that the indicated concentration Ca = CMPCcorresponds to the value 0.25 
on the part of the curve, which, as noted above, will ensure the efficiency of the sorbent. The reciprocal of this 

value  determines the required multiplicity of the reserve of the sorbent surface occupied by toxin molecules in 

relation to the total sorbent surface. The required sorption surface area increases with an increase in the 

molecular weight of the adsorbate.  

It is known that complex organic compounds usually have a bulky structure and their spatial configuration is not reduced to linear 

chains. Therefore, for simplicity, we will consider the adsorbate (toxin) molecules of a spherical shape with a molecular weight 

m  (earlier tM ), a radius ofr and a diametrical cross-sectional area
2A r  (earlier

2

dS r ). Particles of a 

magnetically controlled sorbent will also be considered spherical with a radius R and a surface area 
24S R  (previously

24МУСS R ). 

Assuming R r , let us consider the case of the placement of adsorbate molecules on the surface. 

It is known that complex organic compounds usually have a bulky structure (they cannot be reduced to simple linear chains). As 

an example, consider the case of placement of spherical adsorbate (toxin with molecular weight mM ) molecules of radius r and 

diametrical cross-sectional area: 

Sd =
2r     (1) 

on the surface of spherical granules of magnetically controlled sorbents of radius R with a surface area: 

SМУС=4 R2    (2) 

 

Suppose that a complex compound (particle or toxin) with molecular weight M = m consists of m identical spherical objects of 

radius r1, the so-called elementary objects, and has a spherical shape of radius rm. Let us assume that the radius of a particle of 

magnetically controlled sorbents is significantly larger than the size of an adsorbate particle. Let's designate the area occupied by an 

elementary object 1S . The ratio of the radii Mr of a complex compound and an elementary object is determined by the obvious 

relationship:  

3
1Mr r m ,  

taking into account which we determine the ratio of the areas of their diametrical cross-sections: 
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1MA A m      (Sdm= Sd1 
3 2m ). 

Let the maximum permissible concentration (MPC), i.e. the number of molecules per unit volume of the solution containing the 

toxin, benMPC. Then the sorbent for dense placement of these molecules on its surface must have an area equal to: 

S=nMPC. Sd1 
3 2m , 

Accordingly, when working on a linear section of the sorption characteristic, i.e. taking into account the density coefficient, the 

required sorbent area is determined by the expression: 

SМУС=nMPC. Sd1 
3 2m .Кпл

-1   (3)  

The mass of one sorbent granule with density , radius R and volume V is determined by the formula: 

ММУС= V= 3

3

4
R  

The number of granules of magnetically controlled sorbents in 1 kg of sorbent is obviously equal to: 

3

0

1

(4 3)
N

r 
 . 

Taking into account formula (2), for the surface area of one sorbent granule, we determine the specific surface area, i.e. sorbent 

sorbent surface of unit weight: 

R
SМУСуд



3
     (4) 

The required mass of the sorbent (in a solution of a unit volume) is determined by the ratio of expressions (3) and (4), from which 

we obtain the following formula: 

ММУС=

пл

ПДК

МУСуд

МУС

К

RSnM

S

S

3

1

3/2
  (5) 

To calculate the required dosage of magnetically controlled sorbents for a specific detoxification procedure, recall that the 

molecular weights mM  of known organic compounds - potential adsorbates are located in a wide range. For example, 

phenobarbital has a molecular weight, 232mM   methylene blue - 319.9mM  , hemoglobin - 68000mM  , 

and the recommended volume of the processed biofluid is usually no more than 50 ml. 

 

Conclusion 

 

 The work shows the conditions that ensure the efficiency of the device for extracorporeal detoxification 

using new technologies using magnetically controlled sorbents. The above technique allows calculating and, 

accordingly, optimizing the parameters of one of the important components of this device - the unit for sorption 

and removal of toxins from biofluid. A weighted estimate of the required concentration of magnetically 

controlled sorbents in the biofluid being purified, the amount and concentration of an emulsion containing a 
magnetically controlled sorbent, and the duration of the procedure ultimately ensures the safety and effectiveness 

of this method of medical care.  
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