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Abstract: In this paper a mixed nature LP model is taken for study. In real life very often we come across mixed type LPP, and 
the irony is these type of LP Problems are difficult to be solved by usual techniques. Therefore, we have made an effort to 
develop a new approach of simplex technique to obtain an optimum result of mixed nature FLP models of trapezoidal, as well 

as trivial FN. This method is very stress-free to decipher mixed nature FLP models. At times it has less iterations than the 
existing simplex technique. And an attempt is made to showcase the same with few numericals.    
 

Keywords: Fuzzy number, Simplex technique, Fuzzy ranking method, Trivial fuzzy numbers, Fuzzy linear programming 
problem, Mixed trapezoidal fuzzy numbers.……………. 
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1. Introduction  

One of the easiest approaches to perform optimization is LP as it aids us to decipher some of the multifaceted 

optimization models by making a few simple assumptions. Optimization methods and algorithms have gained the 

significance over time to optimize the model. Fuzzy numbers in LPP have evolved as a result of real life 

uncertainties. There may be such situations wherein we are forced to opt for different kinds of fuzzy numbers in 

LPP. As the conditions are not identical in varying conditions, several factors are not clear exactly. As a result of 

uncontrollable factors we used to come across mixed type constraint problem. Also, these kind of models are 

having very few evidences in literature.  

Discovered an optimal solution of LPP (Ghadle et al., 2013) proposed other procedure for simplex, Big-M 

and dual simplex technique. (Thakre et al., 2016) suggested an innovative method to solve FLPP with trapezoidal 

FN using ranking technique, multiplication and addition operators of trapezoidal FN. (Mitlif et al., 2021) a novel 

ranking function of simplex method is developed for LPP to find the optimal solution for LP models which 

includes three variables or less for solar cell application. (Ali and Qureshi, 2020) suggested a new iterative 

process to find the exact solution of maximization and minimization in LPP in dual simplex method and simplex 

method. In this algorithm developed pivot rule. To decipher FLPP using ranking technique, (Bhattacharyyaand 

Majumdar, 2019)offered some innovative systems based on the centroid of triangular and trapezoidal FN. 

(Bhardwaj and Kumar, 2015)revealed that the FFLPP with inequality constraints are difficult to be converted 

into FFLPP with equality constraints. 

Very recently, (Ghadle et al., 2021)various Big-M methods were compared by using the maximization and 

minimization FLPP with triangular and pentagonal IFN. (Nasseri and Mahmoudi, 2019)studied (Ezzati et al., 

2015)some definitions relevant to Fuzzy Set Theory and offered an innovative technique for solving fully FLPP, 

and thereby converting it to crisp LPP. (Ezzati et al., 2015) offered the innovative system only to discover the 

fuzzy optimum result of fully FLPP by equality constraints. 

 Present paper proposes an innovative simplex algorithm for mixed trapezoidal and Trivial FN to convert the 

given FN into crisp number.  Thereby, optimal solution has been achieved. 
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2. Preliminaries  

This segment contains some basic but important definitions for the sequel. (Deshmukh et al, 2020) (Shugani et 

al., 2012) (Ahemed et al., 2015). 

2.1   FN  

A real FN 𝐴̃ is a FN subset of real number R whose membership function 𝜇𝐴̃ fulfills the subsequent situations, 

 𝜇𝐴̃(𝑥) is a continuous function from R to a closed subset [0, 1]. 

 𝜇𝐴̃(𝑥) is stricly increasing on [𝑑1, 𝑑2]. 

 𝜇𝐴̃(𝑥) is stricly decreasing on [𝑑3, 𝑑4]. 

 

where 𝑑1 < 𝑑2 < 𝑑3 < 𝑑4 and 𝑋 ∈ [𝑑1 , 𝑑4].      
 

2.2   Trapezoidal  FN 

A FN 𝐴̃ = (𝑑1 ,𝑑2 , 𝑑3 , 𝑑4) is believed to be a TFN if its membership function is given by the subsequent 

expression: 

 

 
(𝑥 − 𝑑1)(𝑑2 − 𝑑1) for𝑑1 ≤ 𝑥 ≤ 𝑑2 𝜇𝐴̃(𝑥) = 1, for𝑑2 ≤ 𝑥 ≤ 𝑑3 

 
(𝑑4 − 𝑥)(𝑑4 − 𝑑3),  for𝑑3 ≤ 𝑥 ≤ 𝑑4 

 0 otherwise 

2.3   Trivial Trapezoidal FN 

A FN 𝐴̃ = (𝑑1 ,𝑑2 , 𝑑3 , 𝑑4) is believed to be a trivial TFN when and only when  

i) 𝑑1 = 𝑑2 =  𝑑3 =  𝑑4 

ii) It’s membership function is specified by, 

 𝜇𝐴̃(𝑥) = 
1,     0,  When 𝑥 = 𝑎 

otherwise 

2.4   Charactertics of  TFN 

1. A  TFN 𝐴̃ = (𝑑1, 𝑑2 , 𝑑3 , 𝑑4) is believed to be non-negative (non-positive) TFN i.e...𝐴̃ ≥ 0(𝐴̃ ≤ 0) if 

………..and only if 𝑑1 ≥ 0 (𝑑3 ≤ 0) . A TFN is believed to be positive (negative) TFN.i.e. 𝐴̃ > 0(𝐴̃ <0)………..when and only when 𝑑1 > 0 (𝑑3 < 0).   

2. Two TFN 𝐴̃1 = (𝑑1 , 𝑑2 , 𝑑3 , 𝑑4) and 𝐴̃2 = (𝑏1 , 𝑏2 , 𝑏3 , 𝑏4) are said to be equali.e.𝐴̃1 =  𝐴̃2. 

3. A zero TFN is symbolized by 0̃ = (0, 0, 0, 0). 

4. A TFN 𝐴̃ = (𝑑1 , 𝑑2 , 𝑑3 , 𝑑4) is a triangular FN if 𝑑2 = 𝑑3. 
 

2.5α-cut of TFN  

 Let 𝐴̃ = (𝑑1 , 𝑑2 , 𝑑3 , 𝑑4) be a trapezoidal FN. Then its α-cut is given by  (𝛼𝛼𝐿 , 𝛼𝛼𝑈) = [(𝑑2 − 𝑑1)𝛼 + 𝑑1 , 𝑑4 −(𝑑4 − 𝑑3)𝛼], 𝑤ℎ𝑒𝑟𝑒 𝛼 ∈ [0, 1]. 
 

2.6    FZ 

A TFN 𝐴̃ = (𝑑1, 𝑑2 , 𝑑3 , 𝑑4) is believed to be FZ if 𝑅(𝐴̃) = 0. 

 

2.7    Ranking Function 

 If  𝐴̃ = (𝑑1, 𝑑2 , 𝑑3 , 𝑑4) is a FN then the Robust ranking is defined by, 
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𝑅(𝐴̃) = ∫ 0.51
0 (𝛼𝛼𝐿 ,  𝛼𝛼𝑈)𝑑𝛼,                                                          … … . . (2.7.1) 

where(𝛼𝛼𝐿 ,  𝛼𝛼𝑈) is the α-cut of the TFN 𝐴̃. 
For any two FN 𝐴̃1, 𝐴̃2 we have the following comparison 

 𝐴̃1 < 𝐴̃2if and only if 𝑅(𝐴̃1) < 𝑅(𝐴̃2) 

 𝐴̃1 > 𝐴̃2if and only if 𝑅(𝐴̃1) > 𝑅(𝐴̃2) 

 𝑨̃𝟏 = 𝑨̃𝟐𝐢𝐟 𝐚𝐧𝐝 𝐨𝐧𝐥𝐲 𝐢𝐟 𝑹(𝑨̃𝟏) = 𝑹(𝑨̃𝟐) 

 

3. Proposed Simplex Algorithm 

An algorithm is given to discoverthe result of Mixed FLPP by Simplex technique,  

Step 1: Create the  mixed Fuzzy LPP. 

Step 2: Convert all real numbers as trapezoidal FN using the definition of trivial TFN.  

Step 3 : The objective function of FLPP must be of Maximization type. convert it to a Maximization type 

……………providedit is of Minimization type, then by using the result Min Z= -Max(-Z). 

Step 4: Convert all "≥"  type constraints in to " ≤ "  by multiplying both sides by -1. Also convert the 

……………..inequality constraints to equality by addition of slack variable and achieve an IBS. 

Step 5 : Formulate given FLPP in standard form and then obtain IBFS. 

Step 6 : Using Ranking Function (2.8.1). 

Step 7: To find the Pivot Column, 

a) In first iteration, find the pivot column by selecting Max[𝑐𝑗̃  𝑀𝑎𝑥(𝑦̃𝑖𝑗)] , for  entering  vector. 

b)  In further iterations, find the pivot column by selecting max∑ 𝑦̃𝑖𝑗 , ∀𝑦̃𝑖𝑗 ≥ 0, for  entering vector.  

Step 8: To find the pivot Row, 

Pick the largest coefficient of decision variables. 

a) If the largest coeffficient is exclusive, then  the number corresponding to this row and column 

……marks the pivotal number. 

b) Use tie-breaking technique if the largest coefficient is not unique. 

 

Step 9: Use traditional simplex technique for this table.  

Step 10: Overlook corresponding row and column. Go to step 7 and 8 for left over numbers and replicate 

……………..similar approach till the finest result is achieved or there will be an indication of unbounded 

……………..solution. 

Step 11: If all rows and columns are overlooked, then present result is an optimum result. 

 

4. Numerical Examples: 

Example 4.1  

Explain mixed type FLP model: 

Maximize 𝑍̃ = (4, 6, 8, 10)𝑦̃1 + (3, 5, 7, 9)𝑦̃2 + (4, 6, 8, 10)𝑦̃3 + (6, 8, 10, 12)𝑦̃4 

Subject to:     4𝑦̃1 + 5𝑦̃2 + 5𝑦̃3 + (4, 6, 8,10)𝑦̃4                 ≤ (97, 99,101, 103)       5𝑦̃1 + 5𝑦̃3 + (1, 3, 5, 7)𝑦̃4                               ≤ (87, 89, 91, 93) 6𝑦̃1 + (3, 5, 7, 9)𝑦̃2 + 4𝑦̃3 + (1, 3, 5, 7)𝑦̃4   ≤ (97, 99, 101, 103) 𝑦̃1, 𝑦̃2 , 𝑦̃3 , 𝑦̃4   ≥  0 

 

Answer: 
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By usingstep-2, here, the specified mixed FLP model coefficient of variable contains eleven TFN and 

remaining are real numbers. Hence, using the definition of trivial TFN to transform real values as TFN, we 

convert the whole problem into fully FLP model as: (By step-2) 

Maximize 𝑍̃ = (4, 6, 8, 10)𝑦̃1 + (3, 5, 7, 9)𝑦̃2 + (4, 6, 8, 10)𝑦̃3 + (6, 8, 10, 12)𝑦̃4 

Subject to: (4, 4,4, 4)𝑦̃1 + (5, 5, 5, 5)𝑦̃2 + (5, 5, 5, 5)𝑦̃3 + (4, 6, 8,10)𝑦̃4  ≤ (97,99, 101, 103) (5, 5, 5, 5)𝑦̃1 + (5, 5, 5, 5)𝑦̃3 + (1, 3, 5, 7)𝑦̃4                                ≤ (87, 89, 91,93) (6, 6, 6, 6)𝑦̃1 + (3, 5, 7, 9)𝑦̃2 + (4, 4, 4, 4)𝑦̃3 + (1, 3, 5, 7)𝑦̃4  ≤ (97,99, 101, 103) 𝑦̃1, 𝑦̃2 , 𝑦̃3 , 𝑦̃4   ≥  0 

Standard form of fully FLP model: 

Maximize 𝑍̃ = (4, 6, 8, 10)𝑦̃1 + (3,5, 7, 9)𝑦̃2 + (4, 6, 8, 10)𝑦̃3 + (6, 8, 10, 12)𝑦̃4 + 0𝑦̃5 + 0𝑦̃6 + 0𝑦̃7 

Subject to: (4, 4,4, 4)𝑦̃1 + (5, 5, 5, 5)𝑦̃2 + (5, 5, 5, 5)𝑦̃3 + (4, 6, 8,10)𝑦̃4 + (1, 1, 1, 1)𝑦̃5 = (97, 99,101, 103) (5, 5, 5, 5)𝑦̃1 + (5, 5, 5, 5)𝑦̃3 + (1, 3, 5, 7)𝑦̃4 + (1, 1, 1, 1)𝑦̃6 =  (87, 89, 91, 93) (6, 6, 6, 6)𝑦̃1 + (3,5, 7, 9)𝑦̃2 + (4, 4, 4, 4)𝑦̃3 + (1, 3, 5, 7)𝑦̃4 +  (1, 1, 1, 1)𝑦̃7 = (97,99, 101,103) 𝑦̃1 , 𝑦̃2 , 𝑦̃3 , 𝑦̃4 , 𝑦̃5 , 𝑦̃6 , 𝑦̃7 ≥  0 

Step 6:Using (2.8.1) 

Maximize 𝑍̃ =  7𝑦̃1 + 6𝑦̃2 + 7𝑦̃3 + 9𝑦̃4 + 0𝑦̃5 + 0𝑦̃6 + 0𝑦̃7 

Subject to:  4𝑦̃1 + 5𝑦̃2 + 5𝑦̃3 + 7𝑦̃4 + 𝑦̃5 = 100                                     5𝑦̃1 + 5𝑦̃3 + 4𝑦̃4 + 𝑦̃6             = 90                      6𝑦̃1 + 6𝑦̃2 + 4𝑦̃3 + 4𝑦̃4 + 𝑦̃7 = 100                𝑦̃1 , 𝑦̃2 , 𝑦̃3 , 𝑦̃4 , 𝑦̃5 , 𝑦̃6 , 𝑦̃7 ≥  0 

Table 1.  Initial Iteration 

By using Step-7, step-8 and step-9 

  𝑐𝑗̃ 7 6 7 9 0 0 0 𝑐𝐵̃ 𝑦̃𝐵 𝑥𝐵 𝑦̃1 𝑦̃2 𝑦̃3 ỹ4 ỹ5 ỹ6 ỹ7 0 𝑦̃5 100 4 5 5 7∗ 1 0 0 0 ỹ6 90 5 0 5 4 0 1 0 0 ỹ7 100 6 6 4 4 0 0 1 

  𝑐𝑗̃  𝑀𝑎𝑥( 𝑦̃𝑖𝑗) 42 36 35 63    ↑ 

Table 2.  First Iteration 𝑐𝐵̃ 𝑦̃𝐵 𝑥𝐵 𝑦̃1 𝑦̃2 𝑦̃3 ỹ4 ỹ5 ỹ6 ỹ7 9 𝑦̃4 100 7⁄  4 7⁄  5 7⁄  5 7⁄  1 1 7⁄  0 0 0 ỹ6 230 7⁄  19 7⁄  −20 7⁄  15 7⁄  0 −4 7⁄  1 0 0 ỹ7 300 7⁄  26 7⁄ ∗
 22 7⁄  8 7⁄  0 −4 7⁄  0 1 

  ∑ 𝑦̃𝑖𝑗 49 7⁄  27 7⁄  28 7⁄  1 1 7⁄  1 1 ↑ 
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Table 3.  Second Iteration 𝑐𝐵̃ 𝑦̃𝐵 𝑥𝐵 𝑦̃1 𝑦̃2 𝑦̃3 ỹ4 ỹ5 ỹ6 ỹ7 9 𝑦̃4 100 13⁄  0 3 13⁄  7 13⁄  1 3 13⁄  0 −2 13⁄  0 ỹ6 20 13⁄  0 −67 13⁄  17 13⁄ ∗
 0 −2 13⁄  1 −19 26⁄  7 ỹ1 150 13⁄  1 11 13⁄  4 13⁄  0 −2 13⁄  0 7 26⁄  

  ∑ 𝑦̃𝑖𝑗 1 14 13⁄  28 13⁄  1 3 13⁄  1 7 26⁄  ↑ 

Table 4. Third Iteration 𝑐𝐵̃ 𝑦̃𝐵 𝑥𝐵 𝑦̃1 𝑦̃2 𝑦̃3 ỹ4 ỹ5 ỹ6 ỹ7 9 𝑦̃4 120 17⁄  0 40 17⁄  0 1 5 17⁄  −7 17⁄  5 34⁄  7 ỹ3 20 17⁄  0 −67 17⁄  1 0 −2 17⁄  13 17⁄  −19 34⁄  7 ỹ1 190 17⁄  1 35 17⁄  0 0 −2 17⁄  −4 17⁄  15 34⁄  

 

Since all the rows and columns are ignore and ignored and all values of 𝑥𝐵 are positive.  

 Optimal solution is 𝑦̃1 = 19017  , 𝑦̃3 = 2017 , 𝑦̃4 = 12017 and Maximize 𝑍̃ = 150 

Example 4.2  

Explain mixed type FLP model: 

Minimize 𝑍̃ = −(1, 3, 5, 7)𝑦̃1 − (3, 5, 7, 9)𝑦̃2 − (0, 2, 4, 6)𝑦̃3 

Subject to:    (0, 2, 4, 6)𝑦̃1  +  5𝑦̃2       ≤ (3, 5, 7, 9)       4𝑦̃1 +  (0, 2, 4, 6)𝑦̃2      ≤ (2, 4, 6, 8) (0, 2, 4, 6)𝑦̃2  +  6𝑦̃3       ≤ (2, 4, 6, 8) 𝑦̃1 , 𝑦̃2 , 𝑦̃3         ≥  0 

Answer: 

Here the given mixed FLP model coefficient of variable contains three real number and the remaining are 

TFN. So using the definition of trivial TFN to transform the real values as TFN, we convert the whole problem 

into fully FLP model shown in below: (By step-2) 

Minimize 𝑍̃ = −(1, 3, 5, 7)𝑦̃1 − (3, 5, 7, 9)𝑦̃2 − (0, 2, 4, 6)𝑦̃3 

Subject to: (0, 2, 4, 6)𝑦̃1 + (5, 5, 5, 5) 𝑦̃2       ≤ (3, 5, 7, 9)    (4, 4, 4, 4)𝑦̃1  +  (0, 2, 4, 6)𝑦̃2      ≤ (2, 4, 6, 8) (0, 2, 4, 6)𝑦̃2 + (6, 6, 6, 6)𝑦̃3      ≤ (2, 4, 6, 8) 𝑦̃1 , 𝑦̃2 , 𝑦̃3                       ≥  0 

Standard form of fully FLP model: 

Maximize 𝑍̃ = (1, 3, 5, 7)𝑦̃1 + (3, 5, 7, 9)𝑦̃2 + (0, 2, 4, 6)𝑦̃3 + 0𝑦̃4 + 0𝑦̃5 + 0𝑦̃6 

Subject to: (0, 2, 4, 6)𝑦̃1 + (5, 5, 5, 5)𝑦̃2  + (1, 1, 1, 1)𝑦̃4       ≤ (3, 5, 7, 9) (4, 4, 4, 4)𝑦̃1  +  (0, 2, 4, 6)𝑦̃2 + (1, 1, 1, 1)𝑦̃5       ≤ (2, 4, 6, 8) (0, 2, 4, 6)𝑦̃2 + (6, 6, 6, 6)𝑦̃3 + (1, 1, 1, 1)𝑦̃6       ≤ (2, 4, 6, 8) 𝑦̃1 , 𝑦̃2 , 𝑦̃3 , 𝑦̃4 , 𝑦̃5 , 𝑦̃6        ≥  0 
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Step 6: Using (2.8.1) 

Maximize 𝑍̃ =  4𝑦̃1 + 6𝑦̃2 + 3𝑦̃3 + 0𝑦̃4 + 0𝑦̃5 + 0𝑦̃6 

Subject to:  3𝑦̃1 + 5𝑦̃2  +  𝑦̃4      =  6                                    4𝑦̃1 + 3𝑦̃2  +  𝑦̃5     =  5                       3𝑦̃2 + 6𝑦̃3 +  𝑦̃6      =  5               𝑦̃1 , 𝑦̃2 , 𝑦̃3 , 𝑦̃4 , 𝑦̃5 , 𝑦̃6 ≥  0 

Table 1.  Initial Iteration 

By using step-7, step-8 and step-9 

  𝑐𝑗̃ 4 6 3 0 0 0 𝑐𝐵̃ 𝑦̃𝐵 𝑥𝐵 𝑦̃1 𝑦̃2 𝑦̃3 ỹ4 ỹ5 ỹ6 0 𝑦̃4 6 3 5 0 1 0 0 0 ỹ5 5 4 3 0 0 1 0 0 ỹ6 5 0 3 6 0 0 1 

  𝑐𝑗̃  𝑀𝑎𝑥( 𝑦̃𝑖𝑗 ) 16 30 18    ↑ 

Table 2.  First Iteration 𝑐𝐵̃ 𝑦̃𝐵 𝑥𝐵 𝑦̃1 𝑦̃2 𝑦̃3 ỹ4 ỹ5 ỹ6 6 𝑦̃2 6 5⁄  3 5⁄  1 0 1 5⁄  0 0 0 ỹ5 7 5⁄  11 5⁄  0 0 −3 5⁄  1 0 0 ỹ6 7 5⁄  − 9 5⁄  0 6∗ −3 5⁄  0 1 

  ∑ 𝑦̃𝑖𝑗 13 5⁄  1 6 1 5⁄  1 1 ↑ 

Table 3.  Second Iteration 𝑐𝐵̃ 𝑦̃𝐵 𝑥𝐵 𝑦̃1 𝑦̃2 𝑦̃3 ỹ4 ỹ5 ỹ6 6 𝑦̃2 6 5⁄  3 5⁄  1 0 1 5⁄  0 0 

0 ỹ5 7 5⁄  11 5⁄ ∗
 0 0 −3 5⁄  1 0 

3 ỹ3 7 30⁄  −9 30⁄  0 1 −3 30⁄  0 1 6⁄  

  ∑ 𝑦̃𝑖𝑗 13 5⁄  1 1 1 5⁄  1 1 6⁄  ↑ 

Table 4. Third Iteration 𝑐𝐵̃ 𝑦̃𝐵 𝑥𝐵 𝑦̃1 𝑦̃2 𝑦̃3 ỹ4 ỹ5 ỹ6 6 𝑦̃2 9 11⁄  0 1 0 4 11⁄  −3 11⁄  0 4 ỹ1 7 11⁄  1 0 0 −3 11⁄  5 11⁄  0 

3 ỹ3 14 33⁄  0 0 1 −2 11⁄  3 22⁄  1 6⁄  
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Since all the rows and columns are ignore and ignored and all values of 𝑥𝐵 are positive.  

 Optimal solution is 𝑦̃1 = 711 , 𝑦̃2 = 911 , 𝑦̃3 = 1433 and Minimize 𝑍̃ = 28833  

 

5. Conclusion:  

Present paper recommends an innovative technique for obtaining the finest solution of mixed trapezoidal FLP 

problems. It has been evaluated too. We witnessed the lesser iterations or at the most equal iterations for both the 

cases to obtain the solution, i.e. for Maximization and Minimization type of cases by our modified method. This 

suggested method is easy to apply for solving FLPP of mixed type. This method consumes less time as calculation 

of net evaluation is not needed.    
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