H -Supplemented Sub Modules through Non-Cosingular Modules

Tolesa DEKEBA Bekele^{*}

Department of Mathematics, College of Natural and Computational Science, Dire Dawa University,Dire Dawa, Ethiopia E-mail: <u>toleyoobii2020@gmail.com</u> ORCID ID: 0000-0003-1841-612X

Abstract: The classes of *H*-supplemented sub modules are a very nice generalization of lifting modules which have been studied approximately recently. In this paper, we would like to address some general and specific characterizations and properties of *H*-supplemented and γ -*H*-supplemented sub modules. Suppose *M* be a module over a commutative ring *R*, then *M* is called γ -*H*-supplemented if and only if for every sub-module *N* of *M* there is a direct summand *D* of *M* such that M = N + F implies M = D + F for every submodule *F* of *M* with *M*/*F* non-cosingular. Also we demonstrate that *M* is γ -*H*-supplemented if and only if for every submodule *N* of *M* there exists a direct summand *D* of *M* such that $(N + D)/N \ll_{\gamma} M/N$ and $(N + D)/D \ll_{\gamma} M/D$. In addition, we prove that if every δ -cosingular *R*-module is semisimple, then $\overline{Z}(M)$ is a direct summand of *M* for every *R*-module *M* if and only if $\overline{Z}_{\delta}(M)$ is a direct summand of *M* for every *R*-module *M*. **Keywords:** -Supplemented submodule; γ -Small submodule; γ -*H*-Supplemented module; Lifting submodule

1. Introduction and Preliminaries

Let *R* be a commutative ring, and let *M* and *N* be an *R*-modules, then *N* is said to be submodule of *M*, if $N \le M$. A submodule *N* of *M* is said to be small in Mif $N + K \ne M$ for every proper submodule KofM, and denoted by $N \ll M$, as given in [1],[2],[7], [10], [16], and [19]. Also as generalized by Zhou in [19] a sub-module Nof *M* is said to be δ -small in *M* (denoted by $N \ll_{\delta} M$) provided $M \ne N + K$ for any proper submodule Kof *M* with *M*/*K* singular. In his manuscript, Zhou presented the general properties and a certain useful properties of δ -small submodules of a module. A module *M* is called small if it is a small submodule of some module, equivalently, *M* is a small submodule of its injective hull. A submodule *N* of *M* is called coclosed if *N*/*K* is small in *M*/*K*, then N = K. The important concept in module theory which is closely associated to smallness is lifting modules. A module *M* is every submodule Nof *M* contains a direct summand Dof *M* such that $N/D \ll M/D$. A numeral of consequences regarding to lifting modules have been introduced and studied by several authors.

In [14], the authors established that a module M is called H-supplemented in case for every submodule N of M, there exists a direct summand D of M such that M = N + F if and only if M = D + F for every sub module F of M. In [14] different definitions, unusual properties and being a generalization of lifting modules, all directed many researchers to study and investigate H-supplemented modules were demonstrated. Then several authors had tried to consider the H-supplemented. Also in [11], for a ring R and an R-module M such that every (simple) cosingular R-module is M-projective. In addition, the authors proved that every simple cosingular module is M-projective if and only if for $N \le T \le M$, at any time T/N is simple cosingular, and then N is a direct summand of T. Again in [11], they proved that every simple cosingular right R-module is projective if and only if R is a right GV -ring. In their manuscript it is also shown that for a perfect ring R, every cosingular R-module is projective if and only if R is a right GV -ring. In [4] the authors demonstrated the conceptions of E - H -supplemented characterizations of modules and a similar property for a module M by bearing in mind HomR(N, M) instead of S where N is several module.

In [10], the authors deliberated several general properties of *H*-supplemented modules such as homomorphic images and direct summands of these modules. Then [7], the authors presented various equivalent conditions for a module to be *H*-supplemented that shows that this class of modules is closely related to the concept of small submodules. In fact in , the authors demonstrated that a module *M* is *H*-supplemented if and only if for every submodule *N* of *M* there is a direct summand *D* of *M* such that $((N + D)/N) \ll M/N$ and $((N + D)/D) \ll M/D$. In addition the author refer the readers to [8],[9],[10],[11],[14],[15],and [19].

In [13], the authors considered the concepts of *H*-supplemented modules via preradicals. If τ specifies a preradical, a module M, τ -*H*-supplemented provided for every submodule N of M, there is a direct summand D of M such that $((N + D)/N) \subseteq \tau(M/N)$ and $((N + D)/D) \subseteq \tau(M/D)$. Also, in they demonstrated that, if $\overline{Z}(M) = 0$ or $\overline{Z}(M) = M$, then M is called a cosingular (non-cosingular) module. For more discussion, the author referee the readers to [15], [17], and [18]. Let M be a module over a commutative ring R. According to [16], M is called non cosingular provided that $\overline{Z}(M) = M$ or $\overline{Z}(M) = 0$, where $\overline{Z}(M) = \{Kerf \mid f : M \to U\}$ in which U is an arbitrary small right R-module (see also [3], and [4]). Let R be a ring. By [13], R is said to be generalized V-ring (just GV-ring) provided every simple singular right R-module is injective. Also, R is right GV if and only if every simple cosingular right R-module is projective. Let M be an R-module where R is a ring. Let $K \leq M$, then we say K is t-small in M, denoted by $K \ll_t M$, if the inclusion $\overline{Z}^2(M) \subseteq K + N$ implies that $\overline{Z}^2(M) \subseteq N$. We call M, t-small; provided M is a t-small submodule of a module L (see [4] and [6]).

This paper is structured as follows; In Section 2, the author presents a new generalization of the perception of small submodules γ -small submodules. In this part various general properties of γ -small submodules are established. Also, their relation between γ -small submodules and small submodules are considered. In Section 3, the author shall introduce a generalization of *H*-supplemented modules. A module *M* is γ -*H*-supplemented for every submodule *N* of *M* there is a direct summand *D* of *M* such that M = N + F if and only if M = D + F, for every submodule *F* of *M* with M/F non cosingular. In addition, the author delivers an equivalent condition for this definition influencing the close relation of γ -*H*-supplemented modules to the concept of γ - small submodules.

2. Properties of *γ*-Small Sub modules

In this section, the author delivered the definition of a new generalization of smallsubmodules.

Definition 2.1.[3] Let *N* be a submodule of *M*. Then *N* is said to be γ -small in *M*, denoted by $N \ll_{\gamma} M$ if M = N + F with M/F is non cosingular implies M = F.

That means $M \neq N + F$ for every proper submodule *F* of *M* with *M*/*F* non cosingular. Every small submodule of a module is γ -small in that module.

Proposition 2.2. [3] Let *M* be an *R*-module. Let $A \le B \le M$. Then $B \ll_{\gamma} M$ if and only if $A \ll_{\gamma} M$ and $B/A \ll_{\gamma} M/A$.

Proof: Suppose that $B \ll_{\gamma} M$ and let U be a submodule of M such that M = A + U with M/U non cosingular. Since $A \leq B$, then M = B + U. Being $Ba \gamma$ -small submodule of M implies M = U. Thus $A \ll_{\gamma} M$. Let us assume that M/A = B/A + L/A, for some submodule L of M and $\frac{(M/A)}{(L/A)} \cong M/L$ is non cosingular. Then M = B + L combining with $B \ll_{\gamma} M$ yields that M = L.

Conversely, suppose that $A \ll_{\gamma} M$ and $\frac{B}{A} \ll_{\gamma} \frac{M}{A}$. To prove that $B \ll_{\gamma} M$, suppose M = B + U with M/U non cosingular. Therefore $\frac{M}{A} = \frac{B}{A} + \frac{U+A}{A}$.

Note that $\frac{M/A}{(U+A)/A} \cong M/U + A$ is non cosingular. Since $B/A \ll_{\gamma} M/A$, then M/A = (U+A)/A this implies that M = U + A. Since $A \ll_{\gamma} M$ and M/U is noncosingular we conclude that M = U.

Therefore, it follows that $B \ll_{\gamma} M$.

Theorem 2.2.[6]Let *M* be an *R*-module. Let *A*, *B* be submodules of *M* with $A \leq B$. If $A \ll_{\gamma} M$, then $A \ll_{\gamma} M$.

Proof:Suppose that $A \ll_{\gamma} B$. Let M = A + U, such that M/U is non cosingular. Since $B = B \cap M = B \cap (A + U) = A + (B \cap U)$, we have $B/B \cap U \cong ((B + U))/U = M/U$ which implies $B/B \cap U$ is non cosingular. By $A \ll_{\gamma} B$ we conclude that $B = B \cap U$.

Therefore M = U. Hence the result.

Theorem 2.3.[5]Let *M* be an *R*-module. Let $f: M \to M'$ be an epimorphism such that $A \ll_{\gamma} M$, then $A \ll_{\gamma} M'$.

Proof:Suppose that $A \ll_{\gamma} M$ and f(A) + Y = M' for a submodule Y of M' such that $M'/_Y$ is non cosingular. $M/f^{-1}(Y)$ a homomorphic image of M/Y implies $M/f^{-1}(Y)$ is non cosingular.

Hence $M = f^{-1}(Y)$. It is easy to verify that M' = Y.

Theorem 2.4. [5]Let *M* be an *R*-module. Let $M = M_1 \bigoplus M_2$ be an *R*-module and let $A_1 \le M_1$ and $A_2 \le M_2$. Then $A_1 \bigoplus A_2 \ll_{\gamma} M_1 \bigoplus M_2$ if and only if $A_1 \ll_{\gamma} M_1$ and $A_2 \ll_{\gamma} M_2$.

Proof: Suppose that $A_1 \oplus A_2 \ll_{\gamma} M_1 \oplus M_2$. Let $f: M_1 \oplus M_2 \to M_1$ be the projection on M_1 . Since, $A_1 \oplus A_2 \ll_{\gamma} M_1 \oplus M_2$, then $f(A_1 \oplus A_2) \ll_{\gamma} f(M_1 \oplus M_2) \Longrightarrow A_1 \ll_{\gamma} M_1$. Similarly $A_2 \ll_{\gamma} M_2$.

Conversely, suppose that $A_1 \ll_{\gamma} M_1$ and $A_2 \ll_{\gamma} M_2$. Let $A_1 + A_2 + F = M_1 + M_2$ with $(M_1 + M_2)/F$ non cosingular.

Therefore $(M_1 + M_2)/A_2 + F$ as a homomorphic image of $(M_1 + M_2)/F$, is non cosingular. Since $A_1 \ll_{\gamma} M_1 + M_2$ by (2), we determine that $A_2 + F = M_1 + M_2$. Now $A_2 \ll_{\gamma} M_1 + M_2 \Rightarrow F = M_1 + M_2$ as required.

Proposition 2.5.[4]Let *M* be a module such that for every $N \le M$, there exists a direct summand *K* of *M* such that M = N + K and $N \cap K$ is cosingular. If *M* is projective, then *M* satisfies H.

Proof: Suppose that $N \leq M$. By hypothesis, there exists a direct summand M_2 of M such that $M = N + M_2$ and $N \cap M_2$ is cosingular. Let $M = M_1 \bigoplus M_2$. Since M_1 is M_2 -projective, there exists a submodule A of N such that $M = A \bigoplus M_2$. Then by modular low, $N = A \bigoplus (N \cap M_2)$. Then, it is vibrant that (N + A)/A and (N + A)/N are cosingular. Hence M satisfies H.

Theorem 2.6.[5]Let *M* be an *R*-module and $A \leq B$. If *B* is a supplement submodule in *M* and $A \ll_{\gamma} M$, then $A \ll_{\gamma} B$.

Proof: Suppose that, $A \ll_{\gamma} M$ and B be a supplement sub modules of B' in M. Then M = B + B' and $B \cap B' \ll B$. To show that $A \ll_{\gamma} B$, let B = A + U such that B/U is non cosingular. Then M = B + B' = A + U + B'. Since $M/(U + B') = (A + U + B')/(U + B) \cong A/(A \cap (U + B'))$ and $A/(A \cap (U + B'))$ is a homomorphic image of $A/(A \cap U) \cong B/U$, then it will be non cosingular. Since $A \ll_{\gamma} M, M = U + B'$. Now being $B \cap B'$ a small submodule of B implies $B = B \cap M = B \cap (U + B) = U + (B \cap B') = U$. It follows that $A \ll_{\gamma} B$. The following delivers a characterization of a module M such that every submodule of M is γ -small in M.

Proposition 2.7. Let *M* be a simple supplemented module. The following are equivalent:

- (1) Every submodule of *M* is γ -small in *M*;
- (2) None of nonzero homomorphic images of M is non cosingular;
- (3) $\overline{Z}(M) \ll M$.

Proof: (1) \Rightarrow (2): Suppose that every submodule of *M* is γ -small in *M*. Consider a submodule *F* of *M* such that M/F is noncosingular. Since M = M + F and $M \ll_{\gamma} M$, then M = F.

(2) \Rightarrow (3): Suppose that F is a proper sub module of M. Then $\overline{Z}(M/F) \neq M/F$. Therefore, $\overline{Z}(M) + F \neq M$ and which implies that $\overline{Z}(M) \ll M$.

(3)⇒ (2): Suppose *M* be amply supplemented and $\overline{Z}(M) \ll M$. Suppose that M/F be a non cosingular homomorphic image of *M*. Then $M/F = \overline{Z}(M/F) = \overline{Z}^2(M/F) = \frac{\overline{Z}^2(M) + F}{F}$. Since $\overline{Z}(M)$ is a cosingular module, then $\overline{Z}^2(M) = 0$. Therefore M/F = 0.

Proposition 2.8. Suppose *M* be a module and $N \le M$. Let *N* is non cosingular, then $N \ll M$ if and only if $N \ll_{\gamma} M$:

Proof: Let $N \ll_{\gamma} M$ and N be non cosingular. Let N + F = M. Then, we have $N/N \cap F \cong M/F$ is non cosingular. Hence M = F. It follows that $N \ll M$. Hence the result.

Lemma 2.9. Let *N* be a proper submodule of *M* with M/N be a non cosingular. Let $x \in M/N$ such that Rx + N = M. Then there is a maximal submodule *K* of *M* with M/K non cosingular and $x \notin K$.

Proof: Set $A = \{L \le M/N \subseteq L, M/L \text{ is non cosingular, } x \notin L\}$. Then $A = \emptyset$ since $N \in A$. Suppose $\{L_{\alpha}\}$ is a chain in A. Then we prove that A has a maximal element. Obviously, $\bigcup L_{\alpha}$ is a submodule of M and $N \subseteq \bigcup L_{\alpha}$. It is clear that $x \notin \bigcup L_{\alpha}$.

Note that $M / \cup L_{\alpha}$ is non cosingular as well as M / L_{α} for each α . Hence A has a maximal element say K.

Now, Let $K \subset T \subseteq M$ for a submodule T which properly contains K. Then, since K is the maximal element of A, $T \notin A$. Hence $x \in T$. Thus, $M = Rx + N \subseteq T$. Therefore, it shows that K is a maximal submodule of M.

Theorem 2.10. Suppose *M* be a module. Then $\gamma(M) = \bigcap \{N \leq_{max} M : M/N \text{ is non cosingular} \}$.

Proof: Let *N* be a maximal submodule of *M* with M/N non cosingular. Let $K \ll_{\gamma} M$. Consider the submodule N + K of *M*. Suppose that N + K = M, then M = N as $K \ll_{\gamma} M$, which is a contradiction. Hence $N + K = N \Rightarrow K \subseteq N$. Therefore $\sum_{K \ll_{\gamma} M} K \subseteq N$. Then $\sum_{K \ll_{\gamma} M} K \subseteq \cap \{N | N \leq_{max} M \text{ and } M/N \text{ is non cosingular}\}.$

For the other side of presence, let $x \in \{N: N \leq_{max} M \text{ and } M/_N \text{ is non cosingular}\} = P$.

Suppose that xR + L = M with M/L be a non cosingular. If $L \neq M$, then by lemma 2.9, there is a maximal submodule K of M with M/K non cosingular and $x \notin K$. But $x \in P \Rightarrow x \in K$, a contraction.

Therefore L = M. So $xR \ll_{\gamma} M \Rightarrow x \in \sum_{K \ll_{\gamma} M} K$. Therefore, it follows that $P \subseteq \sum_{K \ll_{\gamma} M} K$.

Remark 2.11. Let *R* be a ring and *M* be a right *R*-module. If *SN* denotes the class of simple non-cosingular right *R*-modules, then $\gamma(M) = RejM(SN) = \bigcap \{I : R/I \text{ is simple injective}\}.$

Proposition 2.12. Let *R* be a ring. Then $\gamma(R_R)$ is the largest γ -small right ideal of *R*.

Proof: Let $\gamma(R_R) + I = R$ where R/I, is non cosingular. Then there is a maximal right ideal I_0 of R such that $I \subseteq I_0$. Note that R/I_0 is noncosingular as well as R/I. Then we conclude that $\gamma(R_R) \subseteq I_0 \Longrightarrow I_0 = R$, a contradiction. Therefore I = R, as required.

A ring *R* is said to be a right V-ring (GV -ring), in case every simple (singular) right *R*-module is injective. It follows from ([15], Proposition 2.5) that R is a right V -ring if and only if every right R-module is noncosingular.

Proposition 2.13. [13] Let *R* be a ring. Then every simple right *R*-module is small (cosingular) if and only if $\gamma(R_R) = R$. In particular, if *R* is a right *GV*-ring and $\gamma(RR) = R$, then *R* is a semisimple ring.

Proof: Let *R* be a ring such that all simple right *R*-modules are small. It follows that there does not exist a simple injective right *R*-module combining with the definition of $\gamma(R_R)$ imply $\gamma(R_R) = R$.

Conversely, let $\gamma(R_R) = R$. Then we will demonstrate that every simple right *R*-module is small. Let *M* be a simple right *R*-module which is not small. Then, *M* is injective. Since *M* is simple, there is a maximal right ideal *I* of *R* such that $M \cong R/I$. Since *R/I* is simple injective, we conclude that $\gamma(R_R \not\subseteq R)$ that is a contradiction. It follows that every simple right *R*-module is small (cosingular).

For the concluding, if R is a right GV-ring and $\gamma(R_R) = R$, then each simple right R-module is projective. Therefore, R is semisimple. Let R be a commutative domain which is not a field. Then every finitely generated R-module is small and hence cosingular. Therefore, every simple R-module is small showing that $\gamma(R) = R$.

3. *γ*-*H*-Supplemented Modules

In this section, the author present recollect that a module M is called H-supplemented in case for every submodule N of M, there is a direct summand D of M such that M = N + F if and only if M = D + F for every submodule F of M. Let us present a generalization of H-supplemented modules where we deliberate the class of non cosingular modules instead of the class of all modules.

Definition 3.1.[3] Let *M* be a module. Then *M* is said to be γ -*H*-supplemented, delivered for every submodule *N* of *M* there is a direct summand *D* of *M* such that M = N + F if and only if M = D + F for every submodule *F* of *M* with M/F non cosingular.

Note that for a non cosingular module, two notions *H*-supplemented and γ -*H*-supplemented coincide.

The following provides an equivalent condition for a module to be γ -H-supplemented.

Lemma 3.2. Let *M* be a module. Then *M* is γ -*H*-supplemented if and only if for every sub-module *N* of *M* there exists a direct summand *D* of *M* such that $(N + D)/N \ll_{\gamma} M/N$ and $(N + D)/D \ll_{\gamma} M/D$

Proof: Suppose that M be γ -H-supplemented and $N \le M$. Then there is a direct summand D of M such that M = N + F if and only if M = D + F, for every submodule F of M such that M/F is non cosingular. Suppose that (N + D)/N + F/N = M/N for a submodule F of M containing N with M/F non cosingular. Then D + F = M. Then by hypothesis $N + F = M \Longrightarrow F = M$. Hence the result.

To verify the second γ -small case, let(N + D)/D + Y/D = M/D, where M/Y is non-cosingular. Then N + Y = M. Being M a γ -H-supplemented module implies D + Y = M. Therefore, Y = M. Conversely, suppose that

N + F = M with M/F non cosingular. Then((N + D))/D + ((F + D))/D = M/D. Note that M/(F + D) is non cosingular as well as M/F is non cosingular. Hence F + D = M, since $(N + D)/D \ll_{\gamma} M/D$.

Suppose that D + Y = M for a submodule Y of M such that M/Y is non cosingular. Then (N + D)/N + (N + Y)/N = M/N and M/(N + Y) as a homomorphic image of M/Y is non cosingular. Being (N + D)/N a γ -small submodule of M/N linking with last equality implies N + Y = M.

Theorem 3.3. Let *M* be an indecomposable module. Then *M* is γ -*H*-supplemented if and only if for every proper sub module *N* of *M*, we have $N \ll_{\gamma} M$ or $M/N \ll_{\gamma} M/N$.

Proof. Let *M* be indecomposable and γ -*H*-supplemented. Consider an arbitrary proper submodule *N* of *M*. Then there is a direct summand *D* of *M* such that $(N + D)/N \ll_{\gamma} M/N$ and $(N + D)/D \ll_{\gamma} M/D$. Suppose D = 0. Then clearly $N \ll_{\gamma} M$. Then, D = M implies $M/N \ll_{\gamma} M/N$.

Conversely, suppose that N < M. If $N \ll_{\gamma} M$, then $(N + 0)/N \ll_{\gamma} M/N$ and $(N + 0)/0 \ll_{\gamma} M/0$. Otherwise, $(N + M)/M \ll_{\gamma} M/M$ and $(N + M)/N \ll_{\gamma} M/N$. If *M* is amply supplemented and indecomposable, then *M* is γ -*H*-supplemented if and only if for every submodule *N* of *M* we have $N \ll_{\gamma} M$ or $\overline{Z}(M/N) \ll M/N$.

Next the author present an example of γ -H-supplemented and non- γ -H-supplemented modules.

Example 3.4. Let M = Q as an Z-module. If M is γ -H-supplemented, then for every proper submodule N of M, we conclude that $N \ll_{\gamma} M$ or $M/N \ll_{\gamma} M/N$ by Proposition 3.3 M is non cosingular.

So that $N \ll M$ or $M/N \ll_{\gamma} M/N$. Second case will not happen. It follows that every submodule of M must be small in M, that is a contradiction. Therefore, M is not γ -H-supplemented.

Proposition 3.5. Let *M* be a module and *N* a projection invariant submodule of *M*. If *M* is γ -*H*-supplemented, then M/N is also γ -*H*-supplemented.

Proof. Suppose that K/N be an arbitrary submodule of M/N. Then there exists a direct summand D of M such that M = K + F if and only if M = D + F for every submodule F of M such that M/F is non-cosingular.

Now, put $M = D \bigoplus D'$. Since N is a projection invariant sub module of M, we accomplished that $(N + D)/N \bigoplus (N + D)/N = M/N$. Now, suppose that K/N + Y/N = M/N for a submodule Y/N of M/N with M/Y noncosingular. Then K + Y = M and by hypothesis M = D + Y. Undoubtedly now M/N = (D + N)/N + Y/N.

Now for the other implication, let M/N = (D + N)/N + T/N with M/T non cosingular. Hence M = D + T and again by assumption M = K + T. Obviously M/N = K/N + T/N. It is known that a module M is said to be distributive in case the lattice of submodules of M is distributive, i.e. for each submodules N, K, L of M the equalities $(N \cap L) + (N \cap K) = N \cap (L + K)$ and $N + (K \cap L) = (N + K) \cap (N + L)$ hold.

Definition 3.6.[4] Let *M* and *N* be modules. Let $f \in HomR(N, M)$. Then *M* is called f - H-supplemented (or *H*-supplemented relative to *f*) if there exists a direct summand *D* of *M* such that (Imf + D)/Imf is small in M/Imf and (Imf + D)/D is small in M/D. This is equivalent to saying that $Imf\beta D$ in *M*.

Corollary 3.7. Every homomorphic image of a distributive γ -*H*-supplemented module is γ -*H*-supplemented.

Corollary 3.8. Every direct summand of a weak duo γ -*H*-supplemented module is γ -Hsupplemented.

Following these corollaries, the author presents the following theorem;

Theorem 3.9. Let $M = M_1 \bigoplus M_2$ be a distributive module. Then M is γ -*H*-supplemented module if and only if M_1 and M_2 are γ -*H*-supplemented.

Proof Suppose that M_1 and M_2 be γ -*H*-supplemented and $N \le M$. Set $N_1 = N \cap M_1$ and $N_2 = N \cap M_2$. Then $N = N_1 + N_2$. Now, there are direct summands D_i of M_i for i = 1, 2, such that $(N_i + D_i)/N_i \ll_{\gamma} M_i/N_i$ and $(N_i + D)/D_i \ll_{\gamma} M_i/D_i$.

Now we will show that $(N + D)/N \ll_{\gamma} M/N$ and $(N + D)/D \ll_{\gamma} M/D$, where $D = D_1 \bigoplus D_2$ which is a direct summand of M. Suppose that $(N + D)/N \ll_{\gamma} F/N = M/N$ for a submodule F of M containing N with M/F non cosingular.

Then D + F = M. This follows that $D_1 + (F \cap M_1) = M_1$. Now $(N_1 + D_1)/N_1 \ll_{\gamma} (F \cap M_1/N_1 = M_1/N_1$ and $M_1/F \cap M_1 \cong D_1/F \cap D_1$ as a direct summand of $D/(F \cap D) \cong M/F$ is anon cosingular module.

Therefore, $F \cap M_1 = M_1$ this implies that M is contained in F.

Now consider again the equality D + F = M. Therefore $D_1 + (F \cap M_2) = M_2$. Since $(N_2 + D_2) + F \cap M_2/N_2 = M_2/N_2$ and $(N_2 + D_2)/N_2 \ll_{\gamma} M_2/N_2$ and $also M_2/F \cap M_2 \cong D_2/F \cap D_2$, since a direct summand of $F/F \cap D \cong M/F$ is non cosingular, we determine that $F \cap M_2 = M_2$.

So that M_2 is contained in F which indicates that F = M. For the other γ -small case, let (N + D)/D + T/D = M/D, provided that $T/D \leq M/D$ and M/T is non cosingular.

Now N + T = M and hence $N_1 + (T \cap M_1) = M_1$. Being $(M_1 + D_1)/D_1 \alpha \gamma$ -small submodule of M_1/D_1 combining with the fact that $M_1/(T \cap M_1) \cong N_1/(T \cap N_1)$ as a direct summand of $N/N \cap T \cong M/T$ is non cosingular and the latest impartiality imply that $T \cap M_1 = M_1$ and therefore $M_1 \subseteq T$. By the equivalent procedure, T will contain M_2 . Hence T = M as required. Now that M is γ -H-supplemented.

4. Conclusions

In general, in the classes of *H*-supplemented sub modules, we would addressed some general and specific characterizations and properties of *H*-supplemented and γ -*H*-supplemented sub modules. Suppose *M* be a module over a commutative ring *R*, then *M* is called γ -*H*-supplemented if and only if for every sub-module *N* of *M* there is a direct summand *D* of *M* such that M = N + F implies M = D + F for every submodule *F* of *M* with M/Fnon-cosingular. Also we demonstrate that *M* is γ -*H*-supplemented if and only if for every submodule *N* of *M* there exists a direct summand *D* of *M* such that $(N + D)/N \ll_{\gamma} M/N$

and $(N + D)/D \ll_{\gamma} M/D$. In addition, we prove that if every δ -cosingular **R**-module is semisimple, then $\overline{Z}(M)$ is a direct summand of **M** for every **R**-module M if and only if $\overline{Z}_{\delta}(M)$ is a direct summand of **M** for every **R**-module **M**.

Acknowledgements

I would like to thanks to the anonymous referees, for their comments and suggestions and constructive ideas on this paper. Also, I would like thanks Dire Dawa University Research and Community service vice president office, and heartfully I would like to thanks Mrs. BirhaneBeka-CaltuDiriba with her family, who helps me financially even with out knowing me physical. I would like to say "Waaqnisihaaeebbisu - God may bless you". Also I want to thanks my family, in particular, my special thanks to my wife, Ms. Tigist Tamirat is great.

References

- Calisici, Hamza, and Ali Pancar. "Finitely⊕- Supplemented Modules." International Journal of Pure and Applied Mathematics 21, no. 1 (2005): 51-57.
- Çalişici, H., Pancar, A. ⊕-Cofinitely Supplemented Modules. Czech Math J **54**, 1083–1088 (2004). <u>https://doi.org/10.1007/s10587-004-6453-1</u>
- Hamzekolaee, A.R.M. An approach to H-supplemented modules via noncosingular modules. Ann Univ Ferrara (2021). https://doi.org/10.1007/s11565-021-00356-8
- Hamzekolaee, Ali Reza Moniri, Abdullah Harmanci, Yahya Talebi, and BurcuÜngör. "A new approach to Hsupplemented modules via homomorphisms." Turkish Journal of Mathematics 42, no. 4 (2018): 1941-1955.
- Hosseinpour, Mehrab, and A. R. Moniri Hamzekolaee. "A Kind of F-inverse Split Modules." Journal of Algebraic Systems 7, no. 2 (2020): 167-178.
- Hosseinpour, Mehrab, and Ali Reza Moniri Hamzekolaee. "γ-Small Submodules and γ-Lifting Modules." East West Math 22, no. 01 (2020): 52-63.
- Kosan, M.T., Keskin Tütüncü, D.: "H-supplemented duo modules." J. Algebra Appl. 6(6), 965–971 (2007)
- Kuratomi, Yosuke. "H-supplemented modules and generalizations of quasi-discrete modules." Communications in Algebra 44, no. 7 (2016): 2747-2759.
- Lomp, Christian. "On dual Goldie dimension." PhD diss., ProQuest Dissertations & Theses,, 1996.
- Mohamed, S.H., Müller, B.J.: "Continuous and Discrete Modules. London Mathematical Society Lecture Note Series Book 147". Cambridge University Press, Cambridge (1990)
- Talebi, Y., Moniri Hamzekolaee, A.R., Hosseinpour, M., Harmanci, A., Ungor, B.: Rings for which\every cosingular module is projective. Hacet. J. Math. Stat. **48**(4), 973–984 (2019)
- Talebi, Y., M. Hosseinpour, and AR Moniri Hamzekolaee. "Modules for which Every Non-cosingular Submodule Is A Summand." Bulletin of the Iranian Mathematical Society 43, no. 3 (2017).
- Talebi, Y., Tribak, R., Moniri Hamzekolaee, A.R.: On H-cofinitely supplemented modules. Bull. Iranian Math. Soc. **30**(2), 325–346 (2013)

- Talebi, Y., Moniri Hamzekolaee, A.R., Keskin Tütüncü, D.: "H-supplemented modules with respect to a preradical. Algebra Discrete Math". 12(1), 116–131 (2011)
- Talebi, Y., Vanaja, N.: "The torsion theory cogenerated by M-small modules". Commun. Algebra **30**(3), 1449–1460 (2002)
- Tribak, Rachid. "H-Supplemented modules with small radical." East West Math 11, no. 02 (2009): 211-221.

Wang, Y., Wu, D.: "On H-supplemented modules." Commun. Algebra 40(10), 3679–3689 (2012)

- Zhou, Y. Generalizations of Perfect, Semiperfect, and Semiregular Rings. Algebra Colloq. 7, 305–318 (2000). https://doi.org/10.1007/s10011-000-0305-9
- Ziane, M., El Moussaouy, A. Modules in which every surjective endomorphism has a μμ-small kernel. *Ann Univ Ferrara* **66**, 325–337 (2020). <u>https://doi.org/10.1007/s11565-020-00347-1</u>