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Abstract:  

In this paper, we study a controlled general risk process where claim is homogeneous Markov 

chain and rate of interest is a first-order autoregressive process. We assume that claim is 

homogeneous Markov chain, take a countable number of nonnegative values and rate of interest 

is a sequence of non-negative random variables what it satifies a first-order autoregressive 

process. Generalized Lundberg inequalities for ruin probability of this process are derived by 

the Martingale approach.  
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1. Introduction 

The ruin problem has been studied by many researchers (J. Grandell (1991), H. U. Gerber 
(1979), S.D.Promislow (1991)). J. Cai (2002) considered the ruin probabilities in two risk 

models, with independent premiums and claims and used a first – order autoregressive process 

to model the rates of in interest. J. Cai and D. C. M. Dickson (2004) built Lundberg inequalities 

for ruin probabilities in two discrete- time risk process with a Markov chain interest model and 

independent premiums and claims. J. L. Teugels and B. Sundt (1991, 1995) studied ruin 

probability under the compound Poisson risk model with the effects of constant rate. H. Yang 

(1999) given both exponential and non – exponential upper bounds for ruin probabilities in a 

risk model with constant interest force and independent premiums and claims. L. Xu and R. 

Wang (2006) given upper bounds for ruin probabilities in a risk model with interest force and 

independent premiums and claims with Markov chain interest rate.   

In addition, many papers studied an insurance model where the risk process can be 

controlled by proportional reinsurance. The performance criterion is to choose reinsurance 

control strategies to bound the ruin probability of a discrete-time process with a Markov chain 

interest. Controlling a risk process is a very active area of research, particularly in the last 

decade; see ( J. Grandell (1991), O. Hernández-Lerma, J. B Lasserre (1996, 1999,2003)), for 

instance. Nevertheless obtaining explicit optimal solutions is a difficult task in a general setting. 

Maikol A. Diasparra and Rosaria Romera (2009) obtained generalized Lundberg inequalities for 

the ruin probabilities in a controlled discrete-time risk process with a Markov chain interest.  
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In this article, we extend the model considered by Diasparra and Romera (2009) to 

introduce homogeneous Markov chain claims and rates of interest as a first-order autoregressive 

process. Generalized Lundberg inequalities for ruin probability of this process are derived by 

the Martingale approach.  

 

2. The Model and Basic Assumptions 

Let Yn be the n – th claim payment. The random variable Zn stands for the length of the n – th 

period, that is, the time between the ocurrence of the claims 
1n

Y   and 
n

Y . Let  
0n n

I


be the 

interest rate process. We assume that Yn, Zn, In are defined on the probability space ( , , )A P . 

We consider a discrete – time insurance risk process in with the surplus  process  
1n n

U


 with 

initial surplus u can be written as 

1 1 1(1 ) ( ). ( , ), 1
n n n n n n n

U U I C b Z h b Y for n       .  (2.1) 

We make several assumptions. 

Assumption 2.1. 0
o

U u  . 

Assumption 2.2.  
0n n

I


is a sequence of non-negative random variables, where In  

denotes the rate of interest during the nth period and  satisfies  

1 W ,n n nI I   
     (2.2) 

 
 

 
0

0 1, 0, Wo m n
I i


      is a sequence of independent and identically distributed non-

negative continuous random variables with the same distributive function 

 ( ) ( , W )oG z P z     

Assumption 2.3.  
0n n

Z


 is a sequence of independent and identically distributed non-

negative continuous random variables with the same distributive function 

 ( ) ; ( ) .oF z P Z z     

With F(0) = 0. 

Assumption 2.4.  
0n n

Y


is an homogeneous Markov chain, such that for any n the values 

of Yo are taken from a set of non – negative numbers  1 2, , ..., , ...Y nG y y y  with Yo = yi and 

1: ( ) ( ) ( , , ),ij n j n i i Y j Yp P Y y Y y n N y G y G
            

Where 

1

0 1, 1.ij ij

j

p p





    

Assumption 2.5. We denote by C(b ) the premium left for the insurer if the retention level 

b is chosen, where 0 ( ) ,C b c b B   . 

The process can be controlled by reinsurance, that is, by choosing the retention level (or 

proportionality factor or risk exposure) b B  of a reinsurance contract for one period, where 

 1min
B : b , ,  0 1

min
b ,  will be introduced below. The premium rate c is fixed. 

Assumption 2.6. We denote the function h( b, y )  with values in  0, y  specifies the 

fraction of the claim y paid by the insurer, and it also depends on the retention level b at the 

beginning of the period. Hence y h(b, y ) is the part paid by the reinsurer. The retention level 
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b =1 stands for control action no reinsurance. In this article, we consider the case of 

proportional reinsurance, which means that 

h(b, y ) b.y,  with b B.      (2.3) 

Usually, the constant 
minb  in Assumption 2.5 is chosen by 

    min : min 0,1 ; ( ) 0b b C b   .    (2.4) 

Assumption 2.7. We suppose that  
0n n

Y


, 
0n n

Z


and  
0n n

I


 are independent. 

Assumption 2.8. We consider Markovian control policies  
1n n

a ,


 which at each time 

n depend only on the current state, that is, 
n n n

a (U ) : b  for 0n  . Abusing notation, we will 

indentify functions a : B, where ,B  is the decision space.  

Consider an arbitrary initial state 0
o

U u   and a control policy  
1n n

a


 . Then, by 

iteration of (2.1) and assuming (2.2), it follows that for 1n ,
n

U  satisfies 

1 1

11 1

1 1
n nn

n l n l l l m

ll m l

U u ( I ) C( b )Z b .Y ( I ) 
  

 
     

 
   (2.5) 

The ruin probability when using the policy  , given the initial surplus u,and the initial 

claim 
o i

Y y ,  the initial interest rate 
o r

I i with Assumption 2.1 to 2.8 is defined as  

1

0
i k o o i o

k

( u, y ,i ) P (U ) U u,Y y , I i




 
      

 

   (2.6) 

which we can also express as 

 0 1
i k o o i o

( u, y ,i ) P U for some k U u,Y y , I i       (2.7) 

Similarly, the ruin probabilities in the finite horizon case with Assumption 2.1 to 2.8, are 

given by 

1

0
n

n i k o o i o

k

( u, y ,i ) P (U ) U u,Y y , I i


 
      

 

   (2.8) 

Firstly, we have 

1 2i i n i
( u, y ,i ) ( u, y ,i ) ... ( u, y ,i ) ...,          (2.9) 

and with any ,n N  

n i(u, y , i) 1  .      (2.10) 

Thus, from (2.7) and (2.8), we obtain 

n i i
n
lim ( u, y ,i ) ( u, y ,i ).


    

We denote by   the policy space. A control policy *  is said to be optimal if for any 

initial (Yo, Io) = (yi , i), we have 
*

i i(u, y , i) (u, y , i)     for all  . 

 

3. Upper Bounds For Ruin Probability by the Martingale Approacch 
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We now construct upper bounds for ruin probabilities is the martingale approach. To this 

end, let   1

1

1
n

n n i

i

V U I




  with 1n  , be the so-called discounted risk process. The ruin 

probabilities n

  in (2.8) associated to the  , 1, 2,...
n

V n   are 

 
1

( , , ) 0 , , .
n

n o i k o o o i o

k

u y i P V U u Y y I i
 



 
      

 
 

In the classical risk model, process  
1

o nR U

n
e



is a martingale. However, for our model 

(2.5), there is no constant 0r   such that  
1

nrU

n
e



is a martingale. Still, there exits a constant 

0r   such that  
1

nrV

n
e



is a supermartingale, which allows us to derive probability 

inequalities by the optional stopping theorem. Such a constant is defined in the following 

Lemmas. 

Lemma 3.1. Let model (2.5) satisfy assumptions 2.1 to 2.8. Assume that for each 

 1 2, , ..., , ...
i Y n

y G y y y  ,  1 1( ) ( )
o i

bE Y Y y C b E Z
   and 

 1 1( ) 0 0
o i

P bY C b Z Y y
     then there exists a constant ( )

o o
R R b  satisfying 

  
 1 1( )

1oR C b Z bY

o i
E e Y y

      
    (2.11) 

Proof. 

Define 

 
 1 1( )

( ) 1, (0; )
t C b Z bY

i o i
f t E e Y y t

         
 

We have 

  1 1 1 1(0) ( ) ( ) ( ) 0
i o i o i

f E C b Z bY Y y C b E Z bE Y Y y
             (by 

ndependence).(2.12) 

and the second derivative is 

    1 1
2 ( )''

1 1
( ) ( ) 0

t C b Z bY

i o i
f t E C b Z bY e Y y

        
    

  

This implies that  

 ( )
i

f t is a convex function with (0) 0
i

f      (2.13) 

By  1 1( ) 0 0
o i

P bY C b Z Y y
     , we can find some constant 0   such that 

 1 1( ) 0 0
o i

P bY C b Z Y y
       . 

Then, we get 

 
 1 1( )

( ) 1
t C b Z bY

i o i
f t E e Y y

       
 

  
     1 1

1 1

( )

( )
.1 1

o i

t C b Z bY

o i bY C b Z Y y
E e Y y

 
  

    

   1 1( ) 1.t

o i
e P bY C b Z Y y

        

This implies that lim f ( )
i

t
t


       (2.14) 
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From (2.12), (2.13) and (2.14) there exists a unique positive constant 
i

R  satisfying 

( ) 0
i i

f R  . 

Let: 
  1 1( )

inf 0 : 1oR C b Z bY

o i o i
R R E e Y y

        
 then 

o
R satisfying (2.11). 

Lemma 3.2. Let model (2.5) satisfy assumptions 2.1 to 2.8.  

Assume that for each  1 2, , ..., , ...
i Y n

y G y y y  ,  

  1

1 1 1( ) (1 ) 0 , 0
o i o

P bY C b Z I Y y I i
        

and   1

1 1 1( ) (1 ) , 0
o i o

E C b Z bY I Y y I i
         (2.15) 

there exits 0
ir
   satisfying that  

  1
1 1 1( ) (1 )

, 1ik C b Z bY I

o i o
E e Y y I i

         (2.16) 

Then 

   
1 irmin

o
R R       (2.17) 

And, furthermore, for all  1 2, , ..., , ...
i Y n

y G y y y   

   
  1

1 1 1 1( ) (1 )
, 1

R C b Z bY I

o i o
E e Y y I i

       (2.18) 

Proof 

For each  1 2, , ..., , ...
i Y n

y G y y y  , let 

 
  1

1 1 1( ) (1 )

ir
( ) , ,

r C b Z bY I

o i o
l t E e Y y I i

     for t > 0. 

Then the first derivative of ( )
ir

l t tại t = 0 is 

   ' 1

1 1 1(0) ( ) (1 ) , 0
ir o i o

l E C b Z bY I Y y I i
         

and the second derivative is 

     
2

1
1 1 1

2 ( ) (1 )'' 1

1 1 1( ) ( ) (1 ) , 0
r C b Z bY I

ir o i o
l t E C b Z bY I e Y y I i

      
 

      
 

 

This shows that ( )
ir

l t is a convex function. From (2.15) implies that ir
lim f ( )
t

t


  . 

Let 
ir

  be the unique positive  root of the equation ( ) 0
ir
l t  on  0; .  

Further, if 0
ir

    . However, 

 
   11

1 11 1 1
( ) (1 )( ) (1 )

ij

,

,
o jo

R C b Z by IR C b Z bY I

o i o

i j

E e Y y I i p E e
                

 (by Jensen’s inequality) 
 

1
1

1 1

(1 )
( )o

I
R C b Z bY

o i
E e Y y


     

 

Consequentlty, by Lemma 3.1, we have 
 1 1( )

1oR C b Z bY

o i
E e Y y

     
. Hence, 

  1
1 1 1( ) (1 )

, 1oR C b Z bY I

o i o r
E e Y y I i

      . 

This implies that ir ( ) 0
o

l R  . Moreover, iro
R   for i, r and so 

1
,

: min .
ir o

i r
R R    
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Thus, (2.13) holds. In addition 
1 ir

R   for all i, r, wich implies that 
ir 1( ) 0l R  . This yields 

(2.14). 

Theorem 3.1. Under the hypetheses of Lemma 3.1 and Lemma 3.2, for all 

 1 2, , ..., , ...
i Y n

y G y y y   and 0u   then 

   1( , , )
R u

i r
u y i e

  .    (2.19) 

Proof  

With 1

1

(1 )
k

k k l

l

V U I




   satisfies that 

  1

1

1 1

( ) (1 )
lk

k l t

l t

V u C b Z bY I


 

 
    

 
     (2.20) 

Let 1 nR V

n
S e

 . Then 

       

 
1

1
1 1 1

1

( ) (1 )

1 .

n

n n t

t

R C b Z bY I

n n
S S e




 


  




  

Thus, for any 1n  , 

 
1 1 1 1, ..., , , ..., , , ...,

n n n n
E S Y Y Z Z I I


    

 
   

1
1

1 1 1

1

( ) 1

1 1 1, ..., , , ..., , , ...,

n

n n t

t

R C b Z bY I

n n n n
S E e Y Y Z Z I I




 


  

  
 
  

 

      
   

1
1

1 1 1

1

( ) 1

1 1, ..., , , ...,

n

n n t

t

R C b Z bY I

n n n
S E e Y Y I I




 


  

  
 
  

 

 
   

1
1

1 1 1

1

( ) 1

1, , ...,

n

n n t

t

R C b Z bY I

n n n
S E e Y I I




 


  

  
 
  

 

From   1

1

0 1 1
n

t

t

I




    and Jensen’s inequality implies 

 

   
 

 
1

11

1 1 1 1
1 1 1 1 11

1( ) 1
( ) (1 )

1 1, , ..., , , ...,

nn

tn n t

n n n tt

IR C b Z bY I
R C b Z bY I

n n n n n n
S E e Y I I S E e Y I I




  
   

  
   

           
  

 

In addition,  

     

   1 1
1 1 1 1 1 1 1 1( ) (1 ) ( ) (1 )

1
, , ..., ,n n n n n nR C b Z bY I R C b Z bY I

n n n n
E e Y I I E e Y I

 
                    

 

  1
1 1 1 1( ) (1 )

, 1
R C b Z bY I

o o
E e Y I

       
. 

Thus, we have 

        
1 1 1 1, ..., , , ..., , , ...,

n n n n n
E S Y Y Z Z I I S


     

This implies that  
1n n

S


is a supermartingale. 
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Let  min : 0
i n o

T n V I i   where Vn is given by (2.20). Then 
i

T  is a stopping time and  

 min ,
i i

n T n T   is a finite stopping time. Thus, by the optional stopping theorem for 

martingale, we get 

        
    1

i

R u

n T o
E S E S e

 
   . 

Hence, 

        
           1 .1 .1

i i ii i

R u

n T n T TT n T n
e E S E S E S
   

       

     1 .1 1 ( , , ).Ti

i i

R V

n i rT n T n
E e E u y i

  
       (2.21) 

where (2.21) follows because 0
iT

V  . Thus, by letting n   in (2.19) we obtain.  

 

 

 
 

 

4. Conclusion 

We studied a controlled general risk process where claim is homogeneous Markov chain 

and rate of interest is a first-order autoregressive process. Using Lemma 3.1 and Lemma 3.2,  

Theorem 3.1 provide a upper bounds for probability ( , , )
i

u y i
  by the Martingale approach.  
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